344 research outputs found

    Frustration driven structural distortion in VOMoO4

    Full text link
    Nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), magnetization measurements and electronic structure calculations in VOMoO4 are presented. It is found that VOMoO4 is a frustrated two-dimensional antiferromagnet on a square lattice with competing exchange interactions along the side J1 and the diagonal J2 of the square. From magnetization measurements J1+J2 is estimated around 155 K, in satisfactory agreement with the values derived from electronic structure calculations. Around 100 K a structural distortion, possibly driven by the frustration, is evidenced. This distortion induces significant modifications in the NMR and EPR spectra which can be accounted for by valence fluctuations. The analysis of the spectra suggests that the size of the domains where the lattice is distorted progressively grows as the temperature approaches the transition to the magnetic ground state at Tc=42 K

    Mesoscopic phase separation in Nax_xCoO2_2 (0.65x0.750.65\leq x\leq 0.75)

    Full text link
    NMR, EPR and magnetization measurements in Nax_xCoO2_2 for 0.65x0.750.65\leq x\leq 0.75 are presented. While the EPR signal arises from Co4+^{4+} magnetic moments ordering at Tc26T_c\simeq 26 K, 59^{59}Co NMR signal originates from cobalt nuclei in metallic regions with no long range magnetic order and characterized by a generalized susceptibility typical of strongly correlated metallic systems. This phase separation in metallic and magnetic insulating regions is argued to occur below T(x)T^*(x) (220270220 - 270 K). Above TT^* an anomalous decrease in the intensity of the EPR signal is observed and associated with the delocalization of the electrons which for T<TT<T^* were localized on Co4+^{4+} dz2d_{z^2} orbitals. It is pointed out that the in-plane antiferromagnetic coupling JTJ\ll T^* cannot be the driving force for the phase separation.Comment: 14 figure

    Hematopoietic Stem Cell (HSC)-Independent Progenitors Are Susceptible to Mll-Af9-Induced Leukemic Transformation.

    Get PDF
    Infant acute myeloid leukemia (AML) is a heterogeneous disease, genetically distinct from its adult counterpart. Chromosomal translocations involving the KMT2A gene (MLL) are especially common in affected infants of less than 1 year of age, and are associated with a dismal prognosis. While these rearrangements are likely to arise in utero, the cell of origin has not been conclusively identified. This knowledge could lead to a better understanding of the biology of the disease and support the identification of new therapeutic vulnerabilities. Over the last few years, important progress in understanding the dynamics of fetal hematopoiesis has been made. Several reports have highlighted how hematopoietic stem cells (HSC) provide little contribution to fetal hematopoiesis, which is instead largely sustained by HSC-independent progenitors. Here, we used conditional Cre-Lox transgenic mouse models to engineer the Mll-Af9 translocation in defined subsets of embryonic hematopoietic progenitors. We show that embryonic hematopoiesis is generally permissive for Mll-Af9-induced leukemic transformation. Surprisingly, the selective introduction of Mll-Af9 in HSC-independent progenitors generated a transplantable myeloid leukemia, whereas it did not when introduced in embryonic HSC-derived cells. Ex vivo engineering of the Mll-Af9 rearrangement in HSC-independent progenitors using a CRISPR/Cas9-based approach resulted in the activation of an aberrant myeloid-biased self-renewal program. Overall, our results demonstrate that HSC-independent hematopoietic progenitors represent a permissive environment for Mll-Af9-induced leukemic transformation, and can likely act as cells of origin of infant AML

    Ex vivo fluorescence confocal microscopy: prostatic and periprostatic tissues atlas and evaluation of the learning curve

    Get PDF
    Ex vivo fluorescence confocal microscopy (FCM) is an optical technology that provides fast H&amp;E-like images of freshly excised tissues, and it has been mainly used for “real-time” pathological examination of dermatological malignancies. It has also shown to be a promising tool for fast pathological examination of prostatic tissues. We aim to create an atlas for FCM images of prostatic and periprostatic tissues to facilitate the interpretation of these images. Furthermore, we aimed to evaluate the learning curve of images interpretation of this new technology. Eighty fresh and unprepared biopsies obtained from radical prostatectomy specimens were evaluated using the FCM VivaScope® 2500&nbsp;M-G4 (Mavig GmbH, Munich, Germany; Caliber I.D.; Rochester NY, USA) by two pathologists. Images of FCM with the corresponding H&amp;E are illustrated to create the atlas. Furthermore, the two pathologists were asked to re-evaluate the 80 specimens after 90&nbsp;days interval in order to assess the learning curve of images’ interpretation of FCM. FCM was able to differentiate between different types of prostatic and periprostatic tissues including benign prostatic glands, benign prostatic hyperplasia, high-grade intraepithelial neoplasm, and prostatic adenocarcinoma. As regards the learning curve, FCM demonstrated a short learning curve. We created an atlas that can serve as the base for urologists and pathologists for learning and interpreting FCM images of prostatic and periprostatic tissues. Furthermore, FCM images is easily interpretable; however, further studies are required to explore the potential applications of this new technology in prostate cancer diagnosis and management

    Cryoconite: an efficient accumulator of radioactive fallout in glacial environments

    Get PDF
    Abstract. Cryoconite is rich in natural and artificial radioactivity, but a discussion about its ability to accumulate radionuclides is lacking. A characterization of cryoconite from two Alpine glaciers is presented here. Results confirm that cryoconite is significantly more radioactive than the matrices usually adopted for the environmental monitoring of radioactivity, such as lichens and mosses, with activity concentrations exceeding 10 000 Bq kg−1 for single radionuclides. This makes cryoconite an ideal matrix to investigate the deposition and occurrence of radioactive species in glacial environments. In addition, cryoconite can be used to track environmental radioactivity sources. We have exploited atomic and activity ratios of artificial radionuclides to identify the sources of the anthropogenic radioactivity accumulated in our samples. The signature of cryoconite from different Alpine glaciers is compatible with the stratospheric global fallout and Chernobyl accident products. Differences are found when considering other geographic contexts. A comparison with data from literature shows that Alpine cryoconite is strongly influenced by the Chernobyl fallout, while cryoconite from other regions is more impacted by events such as nuclear test explosions and satellite reentries. To explain the accumulation of radionuclides in cryoconite, the glacial environment as a whole must be considered, and particularly the interaction between ice, meltwater, cryoconite and atmospheric deposition. We hypothesize that the impurities originally preserved into ice and mobilized with meltwater during summer, including radionuclides, are accumulated in cryoconite because of their affinity for organic matter, which is abundant in cryoconite. In relation to these processes, we have explored the possibility of exploiting radioactivity to date cryoconite. </jats:p

    Cryoconite as an efficient monitor for the deposition of radioactive fallout in glacial environments

    Get PDF
    &amp;lt;p&amp;gt;&amp;lt;strong&amp;gt;Abstract.&amp;lt;/strong&amp;gt; Cryoconite is extremely rich in natural and artificial radionuclides, but a comprehensive discussion about its ability to accumulate radioactivity is lacking. A characterization of cryoconite from two Alpine glaciers is presented and discussed. Results confirm that cryoconite is among the most radioactive environmental matrices, with activity concentrations exceeding 10,000&amp;amp;#8201;Bq&amp;amp;#8201;kg&amp;lt;sup&amp;gt;&amp;amp;#8722;1&amp;lt;/sup&amp;gt; for single radionuclides. Atomic and activity ratios of Pu and Cs radioactive isotopes reveal that the artificial radioactivity of Alpine cryoconite is mostly related to the stratospheric fallout from nuclear weapon tests and to the 1986 Chernobyl accidents. The signature of cryoconite radioactivity is thus influenced by both local and more widespread events. The extreme accumulation of radioactivity in cryoconite can be explained only considering the glacial environment as a whole, and particularly the interaction between ice, meltwater, cryoconite and atmospheric deposition. Cryoconite is an ideal monitor to investigate the deposition and occurrence of natural and artificial radioactive species in glacial environment.&amp;lt;/p&amp;gt; </jats:p

    Risk of SARS-CoV-2 infection, hospitalization, and death for COVID-19 in people with Parkinson disease or parkinsonism over a 15-month period: A cohort study

    Get PDF
    Background and purpose: The patterns of long-term risk of SARS-CoV-2 infection, hospitalization for COVID-19, and related death are uncertain in people with Parkinson disease (PD) or parkinsonism (PS). The aim of the study was to quantify these risks compared to a control population cohort, during the period March 2020–May 2021, in Bologna, Northern Italy. Methods: ParkLink Bologna cohort (759 PD, 192 PS) and controls (9226) anonymously matched (ratio&nbsp;=&nbsp;1:10) for sex, age, district, and comorbidity were included. Data were analysed in the whole period and in the two different pandemic waves (March–May 2020 and October 2020–May 2021). Results: Adjusted hazard ratio of SARS-CoV-2 infection was 1.3 (95% confidence interval [CI] = 1.04–1.7) in PD and 1.9 (95% CI&nbsp;=&nbsp;1.3–2.8) in PS compared to the controls. The trend was detected in both the pandemic waves. Adjusted hazard ratio of hospitalization for COVID-19 was 1.1 (95% CI&nbsp;=&nbsp;0.8–1.7) in PD and 1.8 (95% CI&nbsp;=&nbsp;0.97–3.1) in PS. A higher risk of hospital admission was detected in PS only in the first wave. The 30-day mortality risk after hospitalization was higher (p&nbsp;= 0.048) in PS (58%) than in PD (19%) and controls (26%). Conclusions: Compared with controls, after adjustment for key covariates, people with PD and PS showed a higher risk of SARS-CoV-2 infection throughout the first 15 months of the pandemic. COVID-19 hospitalization risk was increased only in people with PS and only during the first wave. This group of patients was burdened by a very high risk of death after infection and hospitalization

    Unconventional Repertoire Profile Is Imprinted during Acute Chikungunya Infection for Natural Killer Cells Polarization toward Cytotoxicity

    Get PDF
    Chikungunya virus (CHIKV) is a worldwide emerging pathogen. In humans it causes a syndrome characterized by high fever, polyarthritis, and in some cases lethal encephalitis. Growing evidence indicates that the innate immune response plays a role in controlling CHIKV infection. We show here that CHIKV induces major but transient modifications in NK-cell phenotype and function soon after the onset of acute infection. We report a transient clonal expansion of NK cells that coexpress CD94/NKG2C and inhibitory receptors for HLA-C1 alleles and are correlated with the viral load. Functional tests reveal cytolytic capacity driven by NK cells in the absence of exogenous signals and severely impaired IFN-γ production. Collectively these data provide insight into the role of this unique subset of NK cells in controlling CHIKV infection by subset-specific expansion in response to acute infection, followed by a contraction phase after viral clearance
    corecore