32 research outputs found

    Comprehensive Fragment Screening of the SARS-CoV-2 Proteome Explores Novel Chemical Space for Drug Development

    Get PDF
    12 pags., 4 figs., 3 tabs.SARS-CoV-2 (SCoV2) and its variants of concern pose serious challenges to the public health. The variants increased challenges to vaccines, thus necessitating for development of new intervention strategies including anti-virals. Within the international Covid19-NMR consortium, we have identified binders targeting the RNA genome of SCoV2. We established protocols for the production and NMR characterization of more than 80 % of all SCoV2 proteins. Here, we performed an NMR screening using a fragment library for binding to 25 SCoV2 proteins and identified hits also against previously unexplored SCoV2 proteins. Computational mapping was used to predict binding sites and identify functional moieties (chemotypes) of the ligands occupying these pockets. Striking consensus was observed between NMR-detected binding sites of the main protease and the computational procedure. Our investigation provides novel structural and chemical space for structure-based drug design against the SCoV2 proteome.Work at BMRZ is supported by the state of Hesse. Work in Covid19-NMR was supported by the Goethe Corona Funds, by the IWBEFRE-program 20007375 of state of Hesse, the DFG through CRC902: “Molecular Principles of RNA-based regulation.” and through infrastructure funds (project numbers: 277478796, 277479031, 392682309, 452632086, 70653611) and by European Union’s Horizon 2020 research and innovation program iNEXT-discovery under grant agreement No 871037. BY-COVID receives funding from the European Union’s Horizon Europe Research and Innovation Programme under grant agreement number 101046203. “INSPIRED” (MIS 5002550) project, implemented under the Action “Reinforcement of the Research and Innovation Infrastructure,” funded by the Operational Program “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and co-financed by Greece and the EU (European Regional Development Fund) and the FP7 REGPOT CT-2011-285950—“SEE-DRUG” project (purchase of UPAT’s 700 MHz NMR equipment). The support of the CERM/CIRMMP center of Instruct-ERIC is gratefully acknowledged. This work has been funded in part by a grant of the Italian Ministry of University and Research (FISR2020IP_02112, ID-COVID) and by Fondazione CR Firenze. A.S. is supported by the Deutsche Forschungsgemeinschaft [SFB902/B16, SCHL2062/2-1] and the Johanna Quandt Young Academy at Goethe [2019/AS01]. M.H. and C.F. thank SFB902 and the Stiftung Polytechnische Gesellschaft for the Scholarship. L.L. work was supported by the French National Research Agency (ANR, NMR-SCoV2-ORF8), the Fondation de la Recherche Médicale (FRM, NMR-SCoV2-ORF8), FINOVI and the IR-RMN-THC Fr3050 CNRS. Work at UConn Health was supported by grants from the US National Institutes of Health (R01 GM135592 to B.H., P41 GM111135 and R01 GM123249 to J.C.H.) and the US National Science Foundation (DBI 2030601 to J.C.H.). Latvian Council of Science Grant No. VPP-COVID-2020/1-0014. National Science Foundation EAGER MCB-2031269. This work was supported by the grant Krebsliga KFS-4903-08-2019 and SNF-311030_192646 to J.O. P.G. (ITMP) The EOSC Future project is co-funded by the European Union Horizon Programme call INFRAEOSC-03-2020—Grant Agreement Number 101017536. Open Access funding enabled and organized by Projekt DEALPeer reviewe

    Discovery of Small Molecule Drugs Targeting the Biogenesis of microRNA-155 for the Treatment of Systemic Lupus Erythematosus

    Get PDF
    Systemic lupus erythematosus (SLE) is an autoimmune disease that often leads to functional disorder in multiple organs, most often with symptoms related to skin lesions, cardiovascular disease and kidney damage. Although significant efforts have been made to find efficient therapies, it still remains uncured. Furthermore, the current therapy is often associated with adverse side effects and leads to a high economic burden for society. At Saverna Therapeutics, in collaboration with our partners, we initiated a lead discovery program that aims to modulate the biogenesis of miR-155. This non-coding RNA is upregulated in SLE patients and SLE mouse models. We used our drug discovery platform based on iterative fragment-based screening by nuclear magnetic resonance (NMR) and machine learning to identify ligands of pre-miR-155. After several iterations and chemical modifications, we have identified compounds that show structure-activity relationships in cellular assays. These inhibitors reduced the level of miR-155 as well as its associated inflammatory protein TNF ? whereas the cells remained viable during exposure of the compounds

    Bayesian modeling for Predicting Promiscuity and Selectivity of Molecules based on Safety Pharmacology Profiling Data.

    No full text
    ‘Promiscuity’ is the likelihood property that a compound is found active against many targets which are not necessary the primary target of interest to develop a safe drug. Promiscuous compounds can carry various adverse effects liabilities and thus restrict the use of the drug or prevent its entry into the clinic. Therefore, there is a clear interest to evaluate compound promiscuity or selectivity at the earliest possible phase of drug discovery. In some cases, the design of compounds with multiple activities in a given pathway may be desirable

    A chemoinformatics analysis of hit lists obtained from high-throughput affinity-selection screening.

    No full text
    The high-throughput affinity-selection screening platform SpeedScreen was recently reported by the Novartis Institutes for BioMedical Research as a homogeneous, label-free screening technology with mass-spectrometry readout. SpeedScreen relies on the screening of compound mixtures with various target proteins and uses fast size-exclusion chromatography to separate target-bound from unbound substances. After disintegration of the target-binder complex, the binder molecules are identified by their molecular masses using liquid chromatography/mass spectrometry. The authors report an analysis of the molecular properties of hits obtained with SpeedScreen on 26 targets screened within the past few years at Novartis using this technology. Affinity-based SpeedScreen is a robust high-throughput screening technology that does not accumulate frequent hitters or potential covalent binders. The hits are representative of the most commonly identified scaffold classes observed for known drugs. Validated SpeedScreen hits tend to be enriched on more lipophilic and larger-molecular-weight compounds compared to the whole library. The potential for a reduced SpeedScreen screening set to be used in case only limited protein quantities are available is evaluated. Such a reduced compound set should also maximize the coverage of the high-performing regions of the chemical property and class spaces; chemoinformatics methods including genetic algorithms and divisive K-means clustering are used for this aim

    Side effect profile prediction - early addressing of big pharma's worst nightmare

    No full text
    The electronic version of this abstract is the complete one and can be found online at: http://www.journal.chemistrycentral.com/content/2/S1/S

    Molecular Informatics as an Enabling in silico Technology Platform for Drug Discovery

    Get PDF
    The molecular informatics platform, as implemented today in the Molecular and Library Informatics (MLI) Technology Program at Novartis Institutes for BioMedical Research (NIBR) Discovery Technologies, will be presented. The mission of the MLI program is primarily defined to contribute to the selection of screening hit and lead compounds using in silico methods. The MLI technology program aims to provide an integrated pipeline of computational methods for high-throughput in silico screening combining specific cheminformatics, bioinformatics, docking and 3D pharmacophore applications. The four core activities of the group include: 1) Molecular diversity management; 2) In silico screening using HTD (high-throughput docking) and 3D pharmacophore searching; 3) Integrated analysis of HTS (high-throughput screening) and profiling data; and 4) Database management and software engineering in the field of in silico screening. The contribution of these activities to the drug discovery process will be summarized together with novel trends in the field
    corecore