314 research outputs found

    Reliability of miRNA Analysis from Fixed and Paraffin-Embedded Tissues

    Get PDF
    In clinical practice, patients\u2019 tissues are fixed and paraffin-embedded in order to enable histological diagnosis. Nowadays, those tissues are also used for molecular characterization. Formalin is the most used fixative worldwide, and Bouin\u2019s solution in some worldwide institutions. Among molecular targets, micro RNAs (miRNAs), the single-stranded non-coding RNAs comprised of 18 to 24 nucleotides, have been demonstrated to be resistant to fixation and paraffin-embedding processes, with consequent possible application in clinical practice. In the present study, let-7e-5p, miR-423-3p, miR-92a-1-5p, miR-30d-5p, miR-155-5p, miR-200a-3p, and miR-429 were investigated in formalin and matched Bouin\u2019s solution-fixed tissues of high grade serous ovarian cancers by means of real-time and droplet digital PCR (ddPCR). Micro RNAs were detectable and analyzable in both formalin- and Bouin\u2019s-fixed specimens, but on average, higher Ct values and lower copies/\u3bcL were found in Bouin\u2019s-fixed samples. Data from formalin-fixed samples correlated significantly for most targets with Bouin\u2019s ones, except for let-7e-5p and miR-155-5p. This study shows that miRNAs are analyzable in both formalin- and Bouin\u2019s-fixed specimens, with the possibility, after proper data normalization, to compare miRNA-based data from formalin-fixed samples to those of Bouin\u2019s-fixed ones

    Exploring wind direction and SO2 concentration by circular-linear density estimation

    Full text link
    The study of environmental problems usually requires the description of variables with different nature and the assessment of relations between them. In this work, an algorithm for flexible estimation of the joint density for a circular-linear variable is proposed. The method is applied for exploring the relation between wind direction and SO2 concentration in a monitoring station close to a power plant located in Galicia (NW-Spain), in order to compare the effectiveness of precautionary measures for pollutants reduction in two different years.Comment: 17 pages, 7 figures, 2 table

    Spatio-Temporal Characteristics of Global Warming in the Tibetan Plateau during the Last 50 Years Based on a Generalised Temperature Zone - Elevation Model

    Get PDF
    Temperature is one of the primary factors influencing the climate and ecosystem, and examining its change and fluctuation could elucidate the formation of novel climate patterns and trends. In this study, we constructed a generalised temperature zone elevation model (GTEM) to assess the trends of climate change and temporal-spatial differences in the Tibetan Plateau (TP) using the annual and monthly mean temperatures from 1961-2010 at 144 meteorological stations in and near the TP. The results showed the following: (1) The TP has undergone robust warming over the study period, and the warming rate was 0.318°C/decade. The warming has accelerated during recent decades, especially in the last 20 years, and the warming has been most significant in the winter months, followed by the spring, autumn and summer seasons. (2) Spatially, the zones that became significantly smaller were the temperature zones of -6°C and -4°C, and these have decreased 499.44 and 454.26 thousand sq km from 1961 to 2010 at average rates of 25.1% and 11.7%, respectively, over every 5-year interval. These quickly shrinking zones were located in the northwestern and central TP. (3) The elevation dependency of climate warming existed in the TP during 1961-2010, but this tendency has gradually been weakening due to more rapid warming at lower elevations than in the middle and upper elevations of the TP during 1991-2010. The higher regions and some low altitude valleys of the TP were the most significantly warming regions under the same categorizing criteria. Experimental evidence shows that the GTEM is an effective method to analyse climate changes in high altitude mountainous regions

    Characterizing genomic alterations in cancer by complementary functional associations.

    Get PDF
    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes

    The Benefits Conferred by Radial Access for Cardiac Catheterization Are Offset by a Paradoxical Increase in the Rate of Vascular Access Site Complications With Femoral Access The Campeau Radial Paradox

    Get PDF
    AbstractObjectivesThe purpose of this study was to assess whether the benefits conferred by radial access (RA) at an individual level are offset by a proportionally greater incidence of vascular access site complications (VASC) at a population level when femoral access (FA) is performed.BackgroundThe recent widespread adoption of RA for cardiac catheterization has been associated with increased rates of VASCs when FA is attempted.MethodsLogistic regression was used to calculate the adjusted VASC rate in a contemporary cohort of consecutive patients (2006 to 2008) where both RA and FA were used, and compared it with the adjusted VASC rate observed in a historical control cohort (1996 to 1998) where only FA was used. We calculated the adjusted attributable risk to estimate the proportion of VASC attributable to the introduction of RA in FA patients of the contemporary cohort.ResultsA total of 17,059 patients were included. At a population level, the VASC rate was higher in the overall contemporary cohort compared with the historical cohort (adjusted rates: 2.91% vs. 1.98%; odds ratio [OR]: 1.48, 95% confidence interval [CI]: 1.17 to 1.89; p = 0.001). In the contemporary cohort, RA patients experienced fewer VASC than FA patients (adjusted rates: 1.44% vs. 4.19%; OR: 0.33, 95% CI: 0.23 to 0.48; p < 0.001). We observed a higher VASC rate in FA patients in the contemporary cohort compared with the historical cohort (adjusted rates: 4.19% vs. 1.98%; OR: 2.16, 95% CI: 1.67 to 2.81; p < 0.001). This finding was consistent for both diagnostic and therapeutic catheterizations separately. The proportion of VASCs attributable to RA in the contemporary FA patients was estimated at 52.7%.ConclusionsIn a contemporary population where both RA and FA were used, the safety benefit associated with RA is offset by a paradoxical increase in VASCs among FA patients. The existence of this radial paradox should be taken into consideration, especially among trainees and default radial operators

    Global Chronic Total Occlusion Crossing Algorithm: JACC State-of-the-Art Review

    Get PDF
    The authors developed a global chronic total occlusion crossing algorithm following 10 steps: 1) dual angiography; 2) careful angiographic review focusing on proximal cap morphology, occlusion segment, distal vessel quality, and collateral circulation; 3) approaching proximal cap ambiguity using intravascular ultrasound, retrograde, and move-the-cap techniques; 4) approaching poor distal vessel quality using the retrograde approach and bifurcation at the distal cap by use of a dual-lumen catheter and intravascular ultrasound; 5) feasibility of retrograde crossing through grafts and septal and epicardial collateral vessels; 6) antegrade wiring strategies; 7) retrograde approach; 8) changing strategy when failing to achieve progress; 9) considering performing an investment procedure if crossing attempts fail; and 10) stopping when reaching high radiation or contrast dose or in case of long procedural time, occurrence of a serious complication, operator and patient fatigue, or lack of expertise or equipment. This algorithm can improve outcomes and expand discussion, research, and collaboration

    A comparative analysis of predictive models of morbidity in intensive care unit after cardiac surgery – Part I: model planning

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Different methods have recently been proposed for predicting morbidity in intensive care units (ICU). The aim of the present study was to critically review a number of approaches for developing models capable of estimating the probability of morbidity in ICU after heart surgery. The study is divided into two parts. In this first part, popular models used to estimate the probability of class membership are grouped into distinct categories according to their underlying mathematical principles. Modelling techniques and intrinsic strengths and weaknesses of each model are analysed and discussed from a theoretical point of view, in consideration of clinical applications.</p> <p>Methods</p> <p>Models based on Bayes rule, <it>k-</it>nearest neighbour algorithm, logistic regression, scoring systems and artificial neural networks are investigated. Key issues for model design are described. The mathematical treatment of some aspects of model structure is also included for readers interested in developing models, though a full understanding of mathematical relationships is not necessary if the reader is only interested in perceiving the practical meaning of model assumptions, weaknesses and strengths from a user point of view.</p> <p>Results</p> <p>Scoring systems are very attractive due to their simplicity of use, although this may undermine their predictive capacity. Logistic regression models are trustworthy tools, although they suffer from the principal limitations of most regression procedures. Bayesian models seem to be a good compromise between complexity and predictive performance, but model recalibration is generally necessary. <it>k</it>-nearest neighbour may be a valid non parametric technique, though computational cost and the need for large data storage are major weaknesses of this approach. Artificial neural networks have intrinsic advantages with respect to common statistical models, though the training process may be problematical.</p> <p>Conclusion</p> <p>Knowledge of model assumptions and the theoretical strengths and weaknesses of different approaches are fundamental for designing models for estimating the probability of morbidity after heart surgery. However, a rational choice also requires evaluation and comparison of actual performances of locally-developed competitive models in the clinical scenario to obtain satisfactory agreement between local needs and model response. In the second part of this study the above predictive models will therefore be tested on real data acquired in a specialized ICU.</p
    • …
    corecore