24 research outputs found

    The grid-dose-spreading algorithm for dose distribution calculation in heavy charged particle radiotherapy

    Get PDF
    A new variant of the pencil-beam (PB) algorithm for dose distribution calculation for radiotherapy with protons and heavier ions, the grid-dose spreading (GDS) algorithm, is proposed. The GDS algorithm is intrinsically faster than conventional PB algorithms due to approximations in convolution integral, where physical calculations are decoupled from simple grid-to-grid energy transfer. It was effortlessly implemented to a carbon-ion radiotherapy treatment planning system to enable realistic beam blurring in the field, which was absent with the broad-beam (BB) algorithm. For a typical prostate treatment, the slowing factor of the GDS algorithm relative to the BB algorithm was 1.4, which is a great improvement over the conventional PB algorithms with a typical slowing factor of several tens. The GDS algorithm is mathematically equivalent to the PB algorithm for horizontal and vertical coplanar beams commonly used in carbon-ion radiotherapy while dose deformation within the size of the pristine spread occurs for angled beams, which was within 3 mm for a single proton pencil beam of 3030^\circ incidence, and needs to be assessed against the clinical requirements and tolerances in practical situations.Comment: 7 pages, 3 figure

    Computational modeling of beam-customization devices for heavy-charged-particle radiotherapy

    Get PDF
    A model for beam customization with collimators and a range-compensating filter based on the phase-space theory for beam transport is presented for dose distribution calculation in treatment planning of radiotherapy with protons and heavier ions. Independent handling of pencil beams in conventional pencil-beam algorithms causes unphysical collimator-height dependence in the middle of large fields, which is resolved by the framework comprised of generation, transport, collimation, regeneration, range-compensation, and edge-sharpening processes with a matrix of pencil beams. The model was verified to be consistent with measurement and analytic estimation at a submillimeter level in penumbra of individual collimators with a combinational-collimated carbon-ion beam. The model computation is fast, accurate, and readily applicable to pencil-beam algorithms in treatment planning with capability of combinational collimation to make best use of the beam-customization devices.Comment: 16 pages, 5 figure

    Investigation of Snow Cover Effects and Attenuation Correction of Gamma Ray in Aerial Radiation Monitoring

    No full text
    In aerial radiation monitoring (ARM), the air dose rate cannot be appropriately estimated under snowy conditions due to attenuation of gamma rays by the snow layer. A technique to address this issue is required for ARM to obtain enough signals for air dose rates. To develop this technique, we investigated the relationship between snow depth and ARM measurement results using ARM, laser imaging detection and ranging, and ground measurement before and after snowfall. From the measured data, the results obtained using three different correction factors were examined and compared. An appropriate correction improved the underestimation of the air dose rate. However, further improvement in the accuracy of the analysis requires accurate estimation of the snow water equivalent

    Computational Modeling of Beam-Customization Devices for Heavy-Charged-Particle Radiotherapy

    No full text
    Purpose: This work is aimed to improve the computational model of the beam-customization devices for treatment planning of radiotherapy with heavy charged particles, where only a single collimator and a compensator have been commonly handled with inaccuracy of unphysical collimator dependence in the middle of large fields. Method and Materials: The phase-space theory is applied to the beam transport through the beam-customization devices to enable handling of multiple collimators and a compensator in any order. The theoretical model was experimentally tested with a carbon-ion beam, where two jaw and a multileaf collimators, a 3-cm PMMA half plate for a range compensator, and an 8-cm square aperture for a patient collimator were concurrently used. In the model, a matrix of pencil beams was transported through the devices and a two-dimensional in-air dose distribution on the isocenter plane was computed within ten seconds. For comparison, the penumbra sizes at the field edges formed by the effective collimators were analytically estimated and the dose profiles along four axes on the isocenter plane were experimentally measured. Results: The model computation agreed with the measurement and analytic estimation at a submillimeter level in penumbra size and reproduced the measured dose fluctuation in the middle of the field due to the range-compensator scatter. Conclusions: The model computation is fast, accurate, and readily applicable to pencil-beam algorithms in treatment planning to enable combinational collimation for the best use of beam-customization devices.AAPM Annual Meeting 200

    Investigation of Snow Cover Effects and Attenuation Correction of Gamma Ray in Aerial Radiation Monitoring

    No full text
    In aerial radiation monitoring (ARM), the air dose rate cannot be appropriately estimated under snowy conditions due to attenuation of gamma rays by the snow layer. A technique to address this issue is required for ARM to obtain enough signals for air dose rates. To develop this technique, we investigated the relationship between snow depth and ARM measurement results using ARM, laser imaging detection and ranging, and ground measurement before and after snowfall. From the measured data, the results obtained using three different correction factors were examined and compared. An appropriate correction improved the underestimation of the air dose rate. However, further improvement in the accuracy of the analysis requires accurate estimation of the snow water equivalent

    Development of an irradiation method with lateral modulation of SOBP width using a cone-type filter for carbon ion beams

    No full text
    Passive irradiation methods deliver an extra dose to normal tissues upstream of the target tumor, while in dynamic irradiation methods, interplay effects between dynamic beam delivery and target motion induced by breathing or respiration distort the dose distributions. To solve the problems of those two irradiation methods, the authors have developed a new method that laterally modulates the spread-out Bragg peak (SOBP) width. By reducing scanning in the depth direction, they expect to reduce the interplay effects. They have examined this new irradiation method experimentally. In this system, they used a cone-type filter that consisted of 400 cones in a grid of 20 cones by 20 cones. There were five kinds of cones with different SOBP widths arranged on the frame two dimensionally to realize lateral SOBP modulation. To reduce the number of steps of cones, they used a wheel-type filter to make minipeaks. The scanning intensity was modulated for each SOBP width with a pair of scanning magnets. In this experiment, a stepwise dose distribution and spherical dose distribution of 60 mm in diameter were formed. The nonflatness of the stepwise dose distribution was 5.7% and that of the spherical dose distribution was 3.8%. A 2 mm misalignment of the cone-type filter resulted in a nonflatness of more than 5%. Lateral SOBP modulation with a cone-type filter and a scanned carbon ion beam successfully formed conformal dose distribution with nonflatness of 3.8% for the spherical case. The cone-type filter had to be set to within 1 mm accuracy to maintain nonflatness within 5%. This method will be useful to treat targets moving during breathing and targets in proximity to important organs
    corecore