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A new variant of the pencil-beam (PB) algorithm for dose distribution calculation for radiother-
apy with protons and heavier ions, the grid-dose spreading (GDS) algorithm, is proposed. The GDS
algorithm is intrinsically faster than conventional PB algorithms due to approximations in convo-
lution integral, where physical calculations are decoupled from simple grid-to-grid energy transfer.
It was effortlessly implemented to a carbon-ion radiotherapy treatment planning system to enable
realistic beam blurring in the field, which was absent with the broad-beam (BB) algorithm. For a
typical prostate treatment, the slowing factor of the GDS algorithm relative to the BB algorithm
was 1.4, which is a great improvement over the conventional PB algorithms with a typical slowing
factor of several tens. The GDS algorithm is mathematically equivalent to the PB algorithm for
horizontal and vertical coplanar beams commonly used in carbon-ion radiotherapy while dose defor-
mation within the size of the pristine spread occurs for angled beams, which was within 3 mm for
a single 150-MeV proton pencil beam of 30◦ incidence, and needs to be assessed against the clinical
requirements and tolerances in practical situations.

I. INTRODUCTION

Ceaseless efforts for accuracy improvement and con-
stant progress in computing technology have made the
pencil-beam (PB) algorithm be the standard method for
dose distribution calculation in heavy charged particle
radiotherapy with protons and heavier ions.1–11 In the
PB algorithm, a treatment beam is divided into elemen-
tary pencil beams with developing transverse spread as
they penetrate through heterogeneous medium to handle
spatial modulation of beam scatter that is ignored in the
broad-beam (BB) algorithm.1,2 The dose distribution will
be formed with superposition of the pencil beams using
kernel-convolution techniques with variations in algorith-
mic implementation, for example, in choice of the coordi-
nate system, order of the multiple integrals, and numeri-
cal approximations, which greatly influence the accuracy,
speed, complexity, and generality of the code.12,13

Though the PB algorithm may be sufficiently accurate
and fast for dose calculation in treatment planning in
the present form, demand for faster calculation methods
may always remain, for example, for optimization in the
intensity-modulated radiotherapy with scanned charged
particle beams,10,14 and for adaptive radiotherapy under
image guidance,15,16 which will ultimately accommodate
on-site re-planning for an immobilized patient quickly be-
tween imaging and treatment. Pursuing faster computa-
tional algorithms might be critical for the innovation to
happen.

This paper presents one of such approaches, where we
briefly review the BB and PB algorithms, describe the
new algorithm, demonstrate the effectiveness in carbon-
ion radiotherapy, evaluate the accuracy with a modeled

proton pencil beam, and discuss the usefulness in heavy
charged particle radiotherapy of the present and future.

II. MATERIALS AND METHODS

A. The broad-beam algorithm

In the BB algorithm, dose D at point ~r is resolved
into the BB dose and the penumbra effect.1,2 The BB
dose DBB, or equivalently dose per fluence of the incident
beam, is given either theoretically or experimentally as
a function of water-equivalent depth w that is calculated
with the ray-tracing integral of effective density ρ from
the beam source ~r0 in radial direction ~v = (~r − ~r0)/|~r −
~r0|. The penumbra effect gradates the field edge with the

error function erf(x) = (2/
√

π)
∫ x

0
e−u2

du of the signed
closest distance to the geometrical field edge, t (t > 0 for
~r in the field, t < 0 otherwise),
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(1)

w(~r) =

∫ |~r−~r0|

0

ρ (~r0 + s~v(~r)) ds (2)

where the projected transverse spread σt(~r) is given ei-
ther experimentally or theoretically.

The formulation of the penumbra effect simulates the
dose-collecting process at point ~r from uniformly and
continuously distributed invariant Gaussian sub-beams
in the field. The assumed uniformity and invariance of
the sub-beams restrict the validity of the model to a nar-



row penumbra region where the local-homogeneity ap-
proximation may be valid.

B. The pencil-beam algorithm

In convolution algorithms, a dose distribution is gen-
erally calculated by kernel integral,

D(~r) =

∫

T (~p)h(~p,~r) d3~p, (3)

where T (~p) is the total energy released per mass (terma)
from the radiation at point ~p and kernel function h(~p,~r)
is the terma fraction transfered to point ~r.13 In the PB
algorithm, the terma equals the BB dose in the beam
field or zero otherwise and is transversely spread by a
planar Gaussian kernel,

T (~p) =

{

DBB (w(~p)) (~p ∈ field)

0 (~p /∈ field)
(4)

h(~p,~r) =
1

2 π σ2
t (~p)

e
− |~r−~p|2

2 σ2
t (~p) δ ((~r − ~p) · ~v(~p)) , (5)

where the Dirac δ function restricts the spreading in the
plane perpendicular to the PB direction ~v, leading the
convolution to an areal integral of a pencil kernel in the
field.1,2 In the numerical integration, several tens or more
terma-emitting points are usually arranged around each
of the dose-collecting points on the transverse plane with
radial distance limitation |~r − ~p| < α

√
2σt, where the

Gaussian tail-cutoff parameter α is normally set to 3 and
a normalization factor is multiplied to the kernel to com-
pensate the ignored tail contributions.2

The PB algorithm accommodates the density hetero-
geneity by involving the ray-tracing integral Eq. (2) to
derive the terma and the kernel within the convolution
integral Eq. (3). The multiple integration will, however,
increase the computational amount severely.

C. The grid-dose-spreading algorithm

In treatment planning, the dose grids must be fine
enough to show dose variation in the patient with grid
spacing as small as σt or less and should be also able to
represent distributions of any quantities. In the grid-
dose-spreading (GDS) algorithm, the termas and the
spreads in Eqs. (4) and (5) are calculated at all the dose
grids and stored in three-dimensional arrays,

Ti = T (~ri) (6)

σti = σt(~ri), (7)

for grid i located at ~ri = (xi, yi, zi) in the grid-based
coordinate system. The number of the ray-tracing inte-
grals is minimized by extracting out of the convolution
integral.

The gridded distributions, however, are not directly
applicable to the convolution due to the coplanar con-
straint between terma emission and dose collection in
the PB model because the PB axis is generally angled
to the x, y, and z grid axes with direction cosine vector
~v = (vx, vy, vz). In order to resolve this difficulty, the
disk-shaped kernel in Eq. (5) is deformed to the best ap-
proximate ellipsoidal kernel of the product of three Gaus-
sian functions,
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where ~q = ~r − ~p = (qx, qy, qz) is the displacement vector
from the terma-emitting to dose-collecting points and σx,
σy, and σz are the grid-axial projections of the spread,

σ2
k(~p) =

∫

q2
k h(~p, ~p + ~q) d3~q

=
(

1 − v2
k(~p)

)

σ2
t (~p) (k = x, y, z), (9)

derived with the planar point kernel in Eq. (5). Apply-
ing the gridded distributions, the convolution in the PB
algorithm in Eq. (3) is rewritten to

Dj =
∑

i∈
“

|qkij|≤α σk+
δk
2

”

∀k

Ti

∏

k

hki(qkij)

εki

(10)

where Dj is the dose collected at grid j, ~qij is the displace-
ment between grids i and j, grid-axial spreading function
hki(qkij) is the dose fraction transfered into width δk at
grid j, and dose-collection acceptance εki compensates
the ignored Gaussian tails by cutoff parameter α for the
summation. The grid-axial spreading functions and the
acceptances are analytically given by

hki(q) =
1√

2 π σki
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which can be quickly computed with the standard math
library.

Since the effective kernel volume is conserved in the de-
formation, the computational amount is proportional to
the cutoff cross section of the pencil beam or roughly to
α2. The computational efficiency is maximized by adopt-
ing the convolution scheme so-called “the interaction
point of view”.12 In this case, the acceptance-corrected
terma Ti/(εxi εyi

εzi) is calculated at each emitter grid i



and then is distributed with the fractions
∏

k hki(qkij)’s
to the nearby grids j’s. The gridded dose distribution Dj

will be formed when all the terma emissions have been
processed as above.

It is noted that the GDS and PB algorithms may share
all the physical and computational models and their in-
accuracies except for the grid quantization and the kernel
deformation. In cases where these additional inaccuracies
are substantially smaller than the other ones, the GDS
and PB algorithms will be practically equivalent.

D. Implementation to treatment planning system

for carbon-ion radiotherapy

Carbon-ion radiotherapy has been practiced at Na-
tional Institute of Radiological Sciences since 1994 with
accelerator complex HIMAC,17 and original treatment
planning system HIPLAN,18,19 where the BB algorithm
has been consistently used to avoid disturbance to the
ongoing clinical studies even though Petti and Kohno
et al. explicitly showed that the BB algorithm involves
principled inaccuracy due to lack of beam blurring in the
field.1,20

The GDS algorithm as described in Sec. II C was imple-
mented to HIPLAN using the existing framework of the
BB code. The terma distribution T (~r) is calculated by
applying σt → 0 in Eq. (1), where the depth–dose curve
DBB(w) is from the beam data library of HIPLAN,21 for
the range-modulated carbon-ion beams including rela-
tive biological effectiveness (RBE) correction.17 Invariant
σt = 4 mm and α = 3 are used to preserve the penumbra
behavior of the BB algorithm for the 400-MeV/nucleon
beams with the multileaf collimator.

Generally, two algorithms can be impartially compared
only under exactly the same condition except for the es-
sential algorithmic differences in implementation. In this
regard, we can accurately compare the GDS and BB al-
gorithms by applying them to the identical plan on the
single HIPLAN system.

E. Analytic proton pencil-beam model

Since the GDS algorithm is a variant of the PB algo-
rithms with additional approximations, it is necessary
and sufficient for the accuracy evaluation to examine
how the GDS calculation reproduces a modeled pencil
beam under realistic conditions in grid spacing, trans-
verse spread, and incident angle. For this purpose, we
take a proton beam in water, or the proton pencil ker-
nel itself, because the simplicity and the largest spread
among the ion species will clarify the algorithmic error.
Bortfeld established an analytic formula for the proton
Bragg curve in water,22 DBB(w) in our notation, and
Hong et al. tabulated the projected transverse scatter of
protons in water,2 σt(w), which determine the analytic
PB model in Eqs. (3), (4), and (5) for reference.

FIG. 1: Clinical dose distributions in a transaxial plane (43
cm × 28 cm) from a carbon-ion beam for prostate treatment
calculated with the (a) BB and (b) GDS algorithms, where a
prostate and seminal vesicles (gray lines) are included in the
target (light gray) that partly overlaps with a rectum (dark
gray) in a patient (gray), a horizontal beam is incident from
the patient’s left (the figure’s right), and the doses are in
linear gray scale (black for zero to white for the maximum).

In applying the GDS algorithm to this system, since
Eq. (4) is not applicable to the infinitesimal field, the
gridded terma and spread distributions are calculated
according to the definition as total energy released per
mass and the dose-weighted avarage in the grid-i voxel ,

Ti =
1

V0

∫ souti

sini

DBB (w(s)) ds (13)

σt
2
i =

1

V0 Ti

∫ souti

sini

σ2
t (w(s)) DBB (w(s)) ds, (14)

where V0 is the volume of the voxel, and sini and souti

are the distances on the beam axis to enter and to exit
from the voxel, respectively. The subsequent formulation
for convolution in Sec. II C is applicable to this system.

For a broad-beam system, the terma and spread distri-
butions are formed with summation and terma-weighted
averaging of those of the pencil beams in Eqs. (13) and
(14), respectively, and then a single volumetric convolu-
tion is quickly applied to form a dose distribution.



III. RESULTS

A. Performance in carbon-ion radiotherapy

Figure 1 shows the clinical, or RBE-weighted, dose dis-
tributions of the GDS and BB calculations on HIPLAN
for a clinical case of carbon-ion radiotherapy for prostate.
The clinical target volume (CTV) consisting of the
prostate and the seminal vesicles, the rectum as an or-
gan at risk, and the planning target volume (PTV) with
5-mm margin to the rectum side and 10-mm margin else-
where added to the CTV, were manually segmented.23

The effective density distribution for heterogeneity cor-
rection was derived from the planning CT image,24

with grid spacings of 1.758 mm along the right–left and
anterior–posterior axes and 2.500 mm along the inferior–
superior axis, which are shared by the dose distributions.

A horizontal beam was conformed to the PTV with
minimum 6 mm field margin using a multileaf collimator
and was customized with a range compensator, a sculp-
tured plastic object attached to the port, to absorb extra
penetration of the carbon ions beyond the PTV with 3
mm depth margin. The compensator was designed in the
3 × 3 mm2-sized pixel-array format with steepness lim-
ited by the maximum depth step of 15 mm considering
the tapered structure of the milling tool. In this example,
the rectum side of the PTV is almost parallel to the hori-
zontal beam and the range compensation results in steep
variation in beam range or so-called range discontinuity.

The BB calculation in Fig. 1(a) exhibits unphysically
too sharp dose gradient at the range discontinuity around
the rectum at risk, which could be influential on the clin-
ical plan review. The ripples and the spikes of the range
surface came from incomplete range compensation within
the 3×3-mm2 pixels. These artifacts have been naturally
smeared out in the GDS calculation in Fig. 1(b).

While the BB algorithm was designed to reproduce
the error function of σt = 4 mm in the penumbra re-
gion, there was submillimeter-level disagreement between
the BB and GDS calculations in field edge defined by
50%-dose position, which is consistent with the grid-
quantization error of the GDS algorithm. The BB and
GDS calculations for the prostate treatment case took 48
s and 66 s with SGI r© Octane workstation, respectively.
Namely, the GDS calculation was 1.4 times slower than
the BB calculation in this case.

B. Performance for angled proton pencil beam

Figure 2 shows dose distributions in water projected
onto the x–z plane, where a point-like 150-MeV pro-
ton beam with projected angular spread θ0 = 10 mrad
is generated at 10 cm above water level with zenith
angle 30◦, namely with ~r0 = (10/

√
3, 0, 10) cm and

~v = (−1/2, 0,−
√

3/2) in the grid-based coordinate sys-
tem with origin defined at the beam entrance point into
water. The divergent term θ0 s is quadratically added to

FIG. 2: Dose distributions from a proton pencil beam in water
projected onto the x–z plane, (a) the analytic beam model
and (b) the corresponding GDS calculation. The z axis is
the vertical height from the water level and the x axis is the
relative horizontal position. The 20% and 50% isodose lines
relative to the analytic maximum of 29.2 MeV g−1 cm per
incident proton are drawn with the gray scale images. The
embedded images show the point-spread functions.

the tabulated in-water spread,2 in σt(~r). The grid spac-
ings in the GDS calculation are all 2 mm along the three
axes.

At relatively shallow depth, the GDS and the analytic
model calculations are consistent within the grid reso-
lution especially in the 20% isodose line while the 50%
isodose line suffers from small dose errors under the low-
dose-gradient condition. At the Bragg peak, there is sub-
stantial disagreement in the 20% isodose line within 3
mm.

The embedded images in Fig. 2 show the point-
spreading functions with projected transverse spread of
σt = 4.5 mm at the Bragg peak, where the spreading in
the analytic model is confined in the transverse plane and
that in the GDS algorithm forms an ellipsoidal volume.
In other words, the planar spreading is approximately re-
solved into the three uncorrelated orthogonal spreading
by σx = 3.9 mm, σy = 4.5 mm, and σz = 2.3 mm, which
has deformed the point-spreading function, or the point
kernel, and consequently the dose distribution.

Though both of the GDS and analytic-PB calcula-
tions were instantaneous with the single pencil beam, the
PB calculation would slow down proportionally with the
number of pencil beams for convolution. In fact, Hong
et al. studied the BB and PB algorithms for proton ra-
diotherapy and found that the PB calculation was slower
than the BB calculation by factor of 73.2

IV. DISCUSSION

In the GDS algorithm, the terma distribution is cal-
culated as an intermediate quantity with grid quantiza-
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t;
dashed line) spreads of a coplanar beam reprojected from the
deformed kernel in the GDS algorithm relative to the original
transverse spread (σt) as a function of gantry angle (φ).

tion errors, which will propagate to the dose distribution.
However, the quantization error will be usually negligi-
ble with sufficiently fine grid spacing. For example, in
the prostate treatment case with grid spacing of 1.758
mm, the rms error from the quantization will be as small
as 1.758/

√
12 ≈ 0.5 mm, which is by far better than the

realistic accuracy in target delineation.
The kernel deformation observed in the proton pencil

beam case will greatly depend on beam direction with
respect to the grid axes. When the beam is angled to
all the three grid axes, the transverse planar spreading
is approximated by volumetric spreading that includes
an artifactual longitudinal component. The longitudinal
spread σ′

l and the transverse spread σ′
t of the deformed

kernel are derived from reprojection and conservation of
the spread squared,

σ′
l =

√

∑

k

σ2
k v2

k =
√

1 − v4
x − v4

y − v4
z σt (15)

σ′
t =

√

σ2
t − σ′2

l

2
=

1√
2

√

1 + v4
x + v4

y + v4
z σt, (16)

which are a measure of inaccuracy in distal fall off and
a measure of accuracy in lateral penumbra, respectively,
and will be both

√
(2/3)σt in the worst case with di-

rection ~v = (±1,±1,±1)/
√

3. Figure 3 shows the repro-
jected spreads as a function of gantry angle φ in coplanar
beam arrangement with vy ≈ 0, which explains the defor-
mation of the proton pencil beam at φ = 30◦ in Sec. III B.
In general, inaccuracy will have to be assessed against the
clinical tolerances in realistic situations.

The spread of a pristine pencil beam limits the granu-
larity of the dose distribution and may naturally approx-
imate the necessary and sufficient spatial resolution for
beam control and dose evaluation. The finer structure
below the resolution and the various spatial uncertain-
ties are normally tolerated with appropriate margins. In
fact, the PTV should include substantial margins against
patient setup error and internal organ motion of typi-
cally a few to several millimeters,25 for example 5 to 10
mm for the prostate in Sec. III A. For clinical proton
beams, the 20%–80% penumbra size may grow as large
as 10 mm,2 or σt ≈ 10/1.68 ≈ 6 mm, against which,
a field margin of 1.5 σt ∼ 2 σt ≈ 10 mm around the
PTV is usually added. Then, even with the worst di-
rection ~v = (±1,±1,±1)/

√
3, the artifact as large as

σ′
l =

√
(2/3)σt ≈ 5 mm will be mostly covered up by

those margins.

Generally for broad beams, the systematic deformation
of the kernels uniformly distributed in the field will be
mostly compensated except for field edges in analogy to
the kernel-tilting approximation for photon beams.26 The
spread and hence the deformation will be even smaller
with heavier-ion beams. In addition, when a vertical
or horizontal coplanar beam is used in conjunction with
planning CT in treatment position, namely with φ = 0 or
90 in Fig. 3, the artifact will be completely absent, which
has been almost always the case in carbon-ion radiother-
apy with HIMAC and will be as well with its planned
successors.27 The GDS algorithm is in principle applica-
ble to scanned beams. However, application to multidi-
rectional intensity-modulated beams,10,14 requires some
caution because the kernel deformation will not be com-
pensated even in the middle of the treated volume.

V. CONCLUSIONS

A new variant of the PB algorithm, the GDS algo-
rithm, is proposed for heavy charged particle radiother-
apy with approximations of the gridded intermediate dis-
tributions and a modified convolution kernel for grid-to-
grid energy transfer. The resultant high-speed nature
and easiness of implementation are distinctive features
of the GDS algorithm.

When the beam incidence is angled to all the dose-grid
axes, the approximation will cause deformation in dose
distribution within the size of the pristine spread at field
edges. Such inaccuracy will have to be assessed relatively
against the clinical tolerances and the other sources of
errors in practical situations.
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