3,840 research outputs found

    A general approach to the sign problem - the factorization method with multiple observables

    Full text link
    The sign problem is a notorious problem, which occurs in Monte Carlo simulations of a system with the partition function whose integrand is not real positive. The basic idea of the factorization method applied on such a system is to control some observables in order to determine and sample efficiently the region of configuration space which gives important contribution to the partition function. We argue that it is crucial to choose appropriately the set of the observables to be controlled in order for the method to work successfully in a general system. This is demonstrated by an explicit example, in which it turns out to be necessary to control more than one observables. Extrapolation to large system size is possible due to the nice scaling properties of the factorized functions, and known results obtained by an analytic method are shown to be consistently reproduced.Comment: 6 pages, 3 figures, (v2) references added (v3) Sections IV, V and VI improved, final version accepted by PR

    A Study of the Complex Action Problem in a Simple Model for Dynamical Compactification in Superstring Theory Using the Factorization Method

    Full text link
    The IIB matrix model proposes a mechanism for dynamically generating four dimensional space--time in string theory by spontaneous breaking of the ten dimensional rotational symmetry SO(10)\textrm{SO}(10). Calculations using the Gaussian expansion method (GEM) lend support to this conjecture. We study a simple SO(4)\textrm{SO}(4) invariant matrix model using Monte Carlo simulations and we confirm that its rotational symmetry breaks down, showing that lower dimensional configurations dominate the path integral. The model has a strong complex action problem and the calculations were made possible by the use of the factorization method on the density of states ρn(x)\rho_n(x) of properly normalized eigenvalues λ~n\tilde\lambda_n of the space--time moment of inertia tensor. We study scaling properties of the factorized terms of ρn(x)\rho_n(x) and we find them in agreement with simple scaling arguments. These can be used in the finite size scaling extrapolation and in the study of the region of configuration space obscured by the large fluctuations of the phase. The computed values of λ~n\tilde\lambda_n are in reasonable agreement with GEM calculations and a numerical method for comparing the free energy of the corresponding ansatze is proposed and tested.Comment: 7 pages, 4 figures, Talk presented at the XXVIII International Symposium on Lattice Field Theory, Lattice2010, Villasimius, Italy, June 201

    Deformation modes and geometries in the EPICA-DML ice core, Antarctica

    Get PDF
    Combination of physical-properties methods (crystal-orientation-fabrics, grain-elongation-data, line-scan stratigraphy-documentation) reveal evidences for five deformation geometry regimes:1. Random c-axes distributions and crystal elongation directions (~2020 m depth). Here bed-parallel simple shear deforms the ice causing folding and inclination of stratigraphic layers.5. A last change of geometries is observed at ~2370 m depth, with a locally very restricted (~10 m) backslide to girdle fabric, isoclinal z-folding and borehole closure. Below that an inclined single maximum fabric reoccurs.Simple shear can easily produce the observed small-scale folding of layers which however may belong to disturbances on a larger scale with possible overturning and thus age reversal of layers. Below ~2020 m the EDML climate record has to be interpreted with great care

    Exact fuzzy sphere thermodynamics in matrix quantum mechanics

    Full text link
    We study thermodynamical properties of a fuzzy sphere in matrix quantum mechanics of the BFSS type including the Chern-Simons term. Various quantities are calculated to all orders in perturbation theory exploiting the one-loop saturation of the effective action in the large-N limit. The fuzzy sphere becomes unstable at sufficiently strong coupling, and the critical point is obtained explicitly as a function of the temperature. The whole phase diagram is investigated by Monte Carlo simulation. Above the critical point, we obtain perfect agreement with the all order results. In the region below the critical point, which is not accessible by perturbation theory, we observe the Hagedorn transition. In the high temperature limit our model is equivalent to a totally reduced model, and the relationship to previously known results is clarified.Comment: 22 pages, 14 figures, (v2) some typos correcte

    Mycophenolate mofetil inhibits lymphocyte binding and the upregulation of adhesion molecules in acute rejection of rat kidney allografts.

    Get PDF
    Mycophenolate mofetil (MMF) interacts with purine metabolism and possibly with the expression of adhesion molecules. In the present study, we analysed the expression of these molecules in transplanted kidney allografts treated with RS LBNF1 kidneys were orthotopically transplanted into Lewis rats and either treated with RS (20 mg/kg/day) or vehicle. Rats were harvested 3, 5 and 7 days following transplantation. For binding studies, fresh-frozen sections of transplanted kidneys were incubated with lymph node lymphocytes (LNL) derived from transplanted rats. Additionally, immunohistology was performed with various monoclonal antibodies. In general, MMF resulted in better preservation of graft structure by 7 days. Cellular infiltration and tubular atrophy were less pronounced. At day 3, macrophages were diminished in MMF-treated animals to a high extent, while the number of T cells was almost identical to that of controls. In addition, the number of cells positive for MHC class II and LFA-1 was reduced in the MMF-treated animals. These findings correlated with the binding results. Three days following engraftment, LNL bound to MMF-treated kidneys to a lesser extent compared to controls. In conclusion, MMF resulted in a markedly reduced leucocytic infiltrate, presumably based on a reduced expression of lymphocytic adhesion molecules and an interaction with macrophages
    corecore