6 research outputs found

    Copper-Catalyzed Huisgen 1,3-Dipolar Cycloaddition under Oxidative Conditions: Polymer-Assisted Assembly of 4‑Acyl-1-Substituted-1,2,3-Triazoles

    No full text
    We herein document the first example of a reliable copper-catalyzed Huisgen 1,3-dipolar cycloaddition under oxidative conditions. The combined use of two polymer-supported reagents (polystyrene-1,5,7-triaza­bicyclo­[4,4,0]­dec-5-ene/Cu and polystyrene-2-iodoxy­benzamide) overcomes the thermodynamic instability of copper­(I) species toward oxidation, enabling the reliable Cu-catalyzed Huisgen 1,3-dipolar cycloadditions in the presence of an oxidant agent. This polymer-assisted pathway, not feasible under conventional homogeneous conditions, provides a direct assembly of 4-acyl-1-substituted-1,2,3-triazoles, contributing to expand the reliability and scope of Cu­(I)-catalyzed alkyne–azide cycloaddition

    Effect of Nitrogen Atom Substitution in A<sub>3</sub> Adenosine Receptor Binding: <i>N</i>‑(4,6-Diarylpyridin-2-yl)acetamides as Potent and Selective Antagonists

    No full text
    We report the first family of 2-acetamidopyridines as potent and selective A<sub>3</sub> adenosine receptor (AR) antagonists. The computer-assisted design was focused on the bioisosteric replacement of the N1 atom by a CH group in a previous series of diarylpyrimidines. Some of the generated 2-acetamidopyridines elicit an antagonistic effect with excellent affinity (<i>K</i><sub>i</sub> < 10 nM) and outstanding selectivity profiles, providing an alternative and simpler chemical scaffold to the parent series of diarylpyrimidines. In addition, using molecular dynamics and free energy perturbation simulations, we elucidate the effect of the second nitrogen of the parent diarylpyrimidines, which is revealed as a stabilizer of a water network in the binding site. The discovery of 2,6-diaryl-2-acetamidopyridines represents a step forward in the search of chemically simple, potent, and selective antagonists for the hA<sub>3</sub>AR, and exemplifies the benefits of a joint theoretical–experimental approach to identify novel hA<sub>3</sub>AR antagonists through succinct and efficient synthetic methodologies

    Effect of Nitrogen Atom Substitution in A<sub>3</sub> Adenosine Receptor Binding: <i>N</i>‑(4,6-Diarylpyridin-2-yl)acetamides as Potent and Selective Antagonists

    No full text
    We report the first family of 2-acetamidopyridines as potent and selective A<sub>3</sub> adenosine receptor (AR) antagonists. The computer-assisted design was focused on the bioisosteric replacement of the N1 atom by a CH group in a previous series of diarylpyrimidines. Some of the generated 2-acetamidopyridines elicit an antagonistic effect with excellent affinity (<i>K</i><sub>i</sub> < 10 nM) and outstanding selectivity profiles, providing an alternative and simpler chemical scaffold to the parent series of diarylpyrimidines. In addition, using molecular dynamics and free energy perturbation simulations, we elucidate the effect of the second nitrogen of the parent diarylpyrimidines, which is revealed as a stabilizer of a water network in the binding site. The discovery of 2,6-diaryl-2-acetamidopyridines represents a step forward in the search of chemically simple, potent, and selective antagonists for the hA<sub>3</sub>AR, and exemplifies the benefits of a joint theoretical–experimental approach to identify novel hA<sub>3</sub>AR antagonists through succinct and efficient synthetic methodologies
    corecore