3 research outputs found
An efficient hybrid genetic algorithm for the multi-product multi-period inventory routing problem
The inventory routing problem (IRP) addressed in this study is a many-to-one distribution network consisting of an assembly plant and many distinct suppliers where each supplies a distinct product. We consider a finite horizon, multi-periods, multi-suppliers and multi-products where a fleet of capacitated homogeneous vehicles, housed at a depot, transport products from the suppliers to meet the demand specified by the assembly plant in each period. The demand for each product is deterministic and time varying. A mathematical formulation of the problem is given and CPLEX 9.1 is run for a finite amount of time to obtain lower and upper bounds. A hybrid genetic algorithm, which is based on the allocation first route second strategy and which considers both the inventory and the transportation costs, is proposed. In addition to a new set of crossover and mutation operators, we also introduce two new chromosome representations. Several medium and small sized problems are also constructed and added to the existing data sets to show the effectiveness of the proposed approach.Inventory routing Genetic algorithm ILP formulation Inbound logistics
An efficient hybrid genetic algorithm for the multi-product multi-period inventory routing problem
The inventory routing problem (IRP) addressed in this study is a many-to-one distribution network consisting of an assembly plant and many distinct suppliers where each supplies a distinct product. We consider a finite horizon, multi-periods, multi-suppliers and multi-products where a fleet of capacitated homogeneous vehicles, housed at a depot, transport products from the suppliers to meet the demand specified by the assembly plant in each period. The demand for each product is deterministic and time varying. A mathematical formulation of the problem is given and CPLEX 9.1 is run for a finite amount of time to obtain lower and upper bounds. A hybrid genetic algorithm, which is based on the allocation first route second strategy and which considers both the inventory and the transportation costs, is proposed. In addition to a new set of crossover and mutation operators, we also introduce two new chromosome representations. Several medium and small sized problems are also constructed and added to the existing data sets to show the effectiveness of the proposed approach