5 research outputs found

    Wide distribution of carbapenem resistant Acinetobacter baumannii in burns patients in Iran

    Get PDF
    Antimicrobial resistance in carbapenem non-susceptible Acinetobacter baumannii (CNSAb) is a major public health concern globally. This study determined the antibiotic resistance and molecular epidemiology of CNSAb isolates from a referral burn center in Tehran, Iran. Sixty-nine CNSAb isolates were tested for susceptibility to antimicrobial agents using the E test methodology. Multiple locus variable number tandem repeat analysis (MLVA), Multilocus sequence typing (MLST) and multiplex PCR were performed. PCR assays tested for ambler classes A, B, and D β-lactamases. Detection of ISAba1, characterization of integrons, and biofilm formation were investigated. Fifty-three (77) isolates revealed XDR phenotypes. High prevalence of blaOXA-23-like (88) and blaPER-1 (54) were detected. ISAba1 was detected upstream of blaADC, blaOXA-23-like and blaOXA51-like genes in, 97, 42, and 26 of isolates, respectively. Thirty-one (45) isolates were assigned to international clone (IC) variants. MLVA identified 56 distinct types with six clusters and 53 singleton genotypes. Forty previously known MLST sequence types forming 5 clonal complexes were identified. The Class 1 integron (class 1 integrons) gene was identified in 84 of the isolates. The most prevalent (33) cassette combination was aacA4-catB8-aadA1. The IC variants were predominant in the A. baumannii lineage with the ability to form strong biofilms. The XDR-CNSAb from burned patients in Iran is resistant to various antimicrobials, including tigecycline. This study shows wide genetic diversity in CNSAb. Integrating the new Iranian A. baumannii IC variants into the epidemiologic clonal and susceptibility profile databases can help effective global control measures against the XDR-CNSAb pandemic. � 2015 Farshadzadeh, Hashemi, Rahimi, Pourakbari, Esmaeili, Haghighi, Majidpour, Shojaa, Rahmani, Gharesi, Aziemzadeh and Bahador

    Wide distribution of carbapenem resistant Acinetobacter baumannii in burns patients in Iran

    Get PDF
    Antimicrobial resistance in carbapenem non-susceptible Acinetobacter baumannii (CNSAb) is a major public health concern globally. This study determined the antibiotic resistance and molecular epidemiology of CNSAb isolates from a referral burn center in Tehran, Iran. Sixty-nine CNSAb isolates were tested for susceptibility to antimicrobial agents using the E test methodology. Multiple locus variable number tandem repeat analysis (MLVA), Multilocus sequence typing (MLST) and multiplex PCR were performed. PCR assays tested for ambler classes A, B, and D β-lactamases. Detection of ISAba1, characterization of integrons, and biofilm formation were investigated. Fifty-three (77) isolates revealed XDR phenotypes. High prevalence of blaOXA-23-like (88) and blaPER-1 (54) were detected. ISAba1 was detected upstream of blaADC, blaOXA-23-like and blaOXA51-like genes in, 97, 42, and 26 of isolates, respectively. Thirty-one (45) isolates were assigned to international clone (IC) variants. MLVA identified 56 distinct types with six clusters and 53 singleton genotypes. Forty previously known MLST sequence types forming 5 clonal complexes were identified. The Class 1 integron (class 1 integrons) gene was identified in 84 of the isolates. The most prevalent (33) cassette combination was aacA4-catB8-aadA1. The IC variants were predominant in the A. baumannii lineage with the ability to form strong biofilms. The XDR-CNSAb from burned patients in Iran is resistant to various antimicrobials, including tigecycline. This study shows wide genetic diversity in CNSAb. Integrating the new Iranian A. baumannii IC variants into the epidemiologic clonal and susceptibility profile databases can help effective global control measures against the XDR-CNSAb pandemic. � 2015 Farshadzadeh, Hashemi, Rahimi, Pourakbari, Esmaeili, Haghighi, Majidpour, Shojaa, Rahmani, Gharesi, Aziemzadeh and Bahador

    Distribution of pathogenicity island markers and virulence factors in new phylogenetic groups of uropathogenic Escherichia coli isolates

    No full text
    The present study was aimed at investigating the relationship between the new Clermont’s phylogenetic groups, virulence factors, and pathogenicity island markers (PAIs) among uropathogenic Escherichia coli (UPEC) in Iran. This cross-sectional study was carried out on 140 UPEC isolates collected from patients with urinary tract infections in Bushehr, Iran. All isolates were subjected to phylogenetic typing using a new quadruplex-PCR method. The presence of PAI markers and virulence factors in UPEC strains was evaluated by multiplex PCR. The most predominant virulence gene was fimH (85%), followed by iucC (61.4%), papC (38.6%), hlyA (22.1%), cnf-1 (18.6%), afa (10.7%), papG and neuC (each 9.3%), ibeA (3.6%), and sfa/foc (0.7%). The most common phylogenetic group was related to B2 (39.3%), and the least common to A (0.7%). The most prevalent PAI marker was PAI IV536 (77.14%), while markers for PAI III536 (13.57%), PAI IIJ96 (12.86%), and PAI II536 (12.14%) were the least frequent among the UPEC strains. Meanwhile, the PAI IJ96 marker was not detected. There was a significant association between the phylogenetic group B2 and all the studied virulence genes and PAI markers. To our knowledge, this is the first study to compare the relationship between new phylogenetic groups, virulence genes and PAI markers in UPEC strains in Iran. The phylogenetic group B2 was predominantly represented among the studied virulence genes and PAI markers, indicating the preference of particular strains to carry virulence genes. © 2017, Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i

    Antimicrobial resistance of Acinetobacter baumannii to imipenem in Iran: A systematic review and meta-analysis

    No full text
    Imipenem-resistant multi-drug resistant (IR-MDR) Acinetobacter baumannii has been emerged as a morbidity successful nosocomial pathogen throughout the world.To address imipenem being yet the most effective antimicrobial agent against A. baumannii to control outbreaks and treat patients, a systematic review and meta-analysis was performed to evaluate the prevalence of IR-MDR A. baumannii. We systematically searched Web of Science, PubMed, MEDLINE, Science Direct, EMBASE, Scopus, Cochrane Library, Google Scholar, and Iranian databases to identify studies addressing the antibiotic resistance of A. baumannii to imipenem and the frequency of MDR strains in Iran. Out of 58 articles and after a secondary screening using inclusion and exclusion criteria and on the basis of title and abstract evaluation, 51 studies were selected for analysis. The meta-analysis revealed that 55% [95% confidence interval (CI), 53.0–56.5] of A. baumannii were resistant to imipenem and 74% (95% CI, 61.3–83.9) were MDR. The MDR A. baumannii population in Iran is rapidly changing toward a growing resistance to imipenem. Our findings highlight the critical need for a comprehensive monitoring and infection control policy as well as a national susceptibility review program that evaluates IR-MDR A. baumannii isolates from various parts of Iran
    corecore