29 research outputs found

    Role of Wnt5a in Prostate Cancer

    Get PDF
    Wnt5a is a non-canonical secreted glycoprotein of the Wnt family that plays important roles in organ development and tissue orientation. Previous studies have reported that Wnt5a was upregulated at both mRNA and protein levels in prostate cancer, but information regarding its role in predicting clinical outcome in patients after radical prostatectomy is limited. The aim of the present thesis is to define the role of Wnt5a protein expression in prostate cancer. We started by evaluating Wnt5a protein expression by immunohistochemistry in a large, well-defined and population-based cohort and found Wnt5a protein expression to be upregulated in prostate cancer cells compared to benign epithelium. Interestingly, it predicted a favorable outcome for patients after radical prostatectomy as patients with preserved overexpression of Wnt5a protein in tumor cells had longer biochemical recurrence free time compared to patients with low Wnt5a protein expression. We demonstrated that this effect may be explained by the ability of Wnt5a to impair invasion in prostate cancer cells as recombinant Wnt5a treatment decreased invasion in 22Rv1 and DU145 cells while Wnt5a knockdown resulted in increase in invasion in LNCaP and 22Rv1 cells. In the light of conflicting reports on the role of Wnt5a in prostate cancer outcome, we validated our findings in an external population-based cohort. Again, we showed that Wnt5a protein expression was predictive of recurrence after radical prostatectomy in patients with low-grade prostate cancer and this was further enhanced whenWnt5a was combined with prostate cancer tissue biomarkers of known predictive value. We also demonstrated a positive correlation between Wnt5a and ERG protein expressions and that high Wnt5a protein and presence of ERG expression predicted a more favorable outcome. Despite this we observed that rWnt5a treatment of VCaP cells significantly decreased their ERG protein expression. Therefore, the relation between Wnt5a and ERG clearly need further exploration to better understand their functional interplay. In conclusion, our study indicates a tumor suppressor function of Wnt5a protein in localized PCa and that it can be used as a predictive tissue biomarker. Further, we suggest a novel therapeutic approach for patients with localized PCa targeting Wnt5a signaling to impair progression of PCa in these patients by using a Wnt5a mimicking peptide (Foxy5)

    The role of PIP5K1α/pAKT and targeted inhibition of growth of subtypes of breast cancer using PIP5K1α inhibitor

    Get PDF
    Despite recent improvement in adjuvant therapies, triple-negative, and ER+ subtypes of breast cancer (BC) with metastatic potentials remain the leading cause of BC-related deaths. We investigated the role of phosphatidylinositol-4-phosphate 5-kinase alpha (PIP5Kα), a key upstream factor of PI3K/AKT, and the therapeutic effect of PIP5Kα inhibitor on subtypes of BC. The clinical importance of PIP5K1α and its association with survivals were analyzed using three BC cohorts from Nottingham (n = 913), KM plotter (n = 112) and TCGA (n = 817). Targeted overexpression or knockdown of PIP5K1α were introduced into BC cell lines. The effects of PIP5K1α and its inhibitor on growth and invasion of BC were confirmed by using in vitro assays including proliferation, migration, apoptosis and luciferase reporter assays and in vivo xenograft mouse models. All statistical tests were two-sided. PIP5K1α was associated with poor patient outcome in triple-negative BC (for PIP5K1α protein, p = 0.011 and for mRNA expression, p = 0.028, log-rank test). 29% of triple-negative BC had PIP5K1A gene amplification. Elevated level of PIP5K1α increased expression of pSer-473 AKT (p < 0.001) and invasiveness of triple-negative MDA-MB-231 cells (p < 0.001). Conversely, inhibition of PIP5K1α using its inhibitor ISA-2011B, or via knockdown suppressed growth and invasiveness of MDA-MB-231 xenografts (mean vehicle-treated controls = 2160 mm3, and mean ISA-2011B-treated = 600 mm3, p < 0.001). ISA-2011B-treatment reduced expression of pSer-473 AKT (p < 0.001) and its downstream effectors including cyclin D1, VEGF and its receptors, VEGFR1 and VEGFR2 (p < 0.001) in xenograft tumors. In ER+ cancer cells, PIP5K1α acted on pSer-473 AKT, and was in complexes with VEGFR2, serving as co-factor of ER-alpha to regulate activities of target genes including cyclin D1 and CDK1. Our study suggests that our developed PIP5K1α inhibitor has a great potential on refining targeted therapeutics for treatment of triple-negative and ER+ BC with abnormal PI3K/AKT pathways

    Intratumoral FoxP3+Helios+ Regulatory T Cells Upregulating Immunosuppressive Molecules Are Expanded in Human Colorectal Cancer

    No full text
    Regulatory T cells (Tregs) can be antitumorigenic or pro-tumorigenic in colorectal cancer (CRC) depending on the presence of different Treg subsets with various immunosuppressive molecules. Some studies reported the phenotypic characteristics of tumor-infiltrating immune cells in CRC, but limited studies have focused on the co-expression of suppressive molecules on immune cells. The aim of this study was to characterize immune cells in the tumor microenvironment (TME), compared to paired adjacent non-tumor colon tissue of CRC patients. Additionally, we investigated co-expression of immunosuppressive molecules on different Treg subsets in the TME, normal colon tissue, and peripheral blood of CRC patients and healthy donors. In this preliminary study, we report that the majority of CD3+ T cells in the TME are CD4+ T cells with high co-expression of programmed death 1 (PD-1)/cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and PD-1/CD39 molecules. Levels of CD4+FoxP3+Helios+ Tregs were significantly increased in the TME. Furthermore, we observed increased levels of PD-1/CTLA-4 and PD-1/CD39 co-expressing cells within FoxP3+Helios+ and FoxP3+Helios− Treg subsets, indicative of their potent immunosuppressive potential. These results suggest synergistic associations between PD-1/CTLA-4 and PD-1/CD39 in dampening T-cell activation and function along with suppressing tumor-specific immune responses, suggesting that dual blockade of these molecules could be a more effective strategy for inducing antitumor immune responses in CRC

    Emphasizing the role of Wnt5a protein expression to predict favorable outcome after radical prostatectomy in patients with low-grade prostate cancer

    Get PDF
    Wnt5a, a member of non-canonical wingless-related MMTV integration site family is a secreted glycoprotein that plays important roles in development and disease. Recent studies have shown that Wnt5a protein levels are up-regulated in prostate cancer, but contrasting reports exist on the role of Wnt5a to predict outcome after radical prostatectomy in patients with localized prostate cancer. Our group has recently shown that preserved high protein expression of Wnt5a in prostate cancer is associated with longer relapse-free time after radical prostatectomy. The present tissue microarray study emphasizes the role of Wnt5a protein expression in a different, well-defined, and independent cohort consisting of 312 prostate cancer patients. Kaplan–Meier curves plotted between Wnt5a expression and time to biochemical recurrence revealed that in low-grade prostate cancer, patients with preserved high-Wnt5a protein levels in their tumor cells have a lower risk of recurrence after radical prostatectomy compared to patients with low-Wnt5a protein expression. When Wnt5a protein expression was added to a Cox regression multivariate analysis, both Wnt5a protein expression and surgical margin status independently predict biochemical free survival. Herein we confirm Wnt5a positivity as a prognostic factor and show that preserved overexpression of Wnt5a protein is associated with increased time to biochemical recurrence in localized low-grade prostate cancer patients after radical prostatectomy. Our results emphasize that Wnt5a can be used as a predictive biomarker, and favoring the view of Wnt5a as a future therapeutic target in prostate cancer patients with tumor cells displaying low expression of Wnt5a

    The interplay between AR, EGF receptor and MMP-9 signaling pathways in invasive prostate cancer

    No full text
    Background: Metastatic Prostate cancer (PCa) cells have gained survival and invasive advantages. Epidermal growth factor (EGA) receptor is a receptor tyrosine kinase, which may mediate signalling to promote progression and invasion of various cancers. In this study, we uncovered the molecular mechanisms underlying the interconnection among the androgen receptor (AR), matrix metalloproteinase-9 (MMP9) and EGFR in promoting PCa progression. Methods: Immunohistochemical analysis of the tissue microarrays consisting of primary and metastatic PCa tissues was performed. The clinical importance of EGFR and its association with survivals were analyzed using three cohorts from MSKCC Prostate Oncogenome Project dataset (For primary tumors, n = 181; for metastatic tumors n = 37) and The Cancer Genome Atlas Prostate Adenocarcinoma Provisional dataset (n = 495). Targeted overexpression or inhibition of the proteins of interests was introduced into PCa cell lines. Treatment of PCa cell lines with the compounds was conducted. Immunoblot analysis was performed. Results: We showed that AR, MMP-9 and EGFR are interconnect factors, which may cooperatively promote PCa progression. Altered EGFR expression was associated with poor disease-free survival in PCa patients. Induced overexpression of AR led to an increase in the expression of EGFR, p-GSK-313 and decrease in p27 expression in PCa cell lines in the presence of androgen stimulation. Overexpression of MMP9 significantly induced EGFR expression in PCa cells. Inhibition of PIP5K1a, a lipid kinase that acts upstream of PI3K/AKT greatly reduced expressions of AR, MMP-9 and EGFR. Conclusions: Our findings also suggest that PCa cells may utilize AR, EGFR and MMP-9 pathways in androgen-dependent as well as in castration-resistant conditions. Our data suggest a new therapeutic potential to block cancer metastasis by targeting AR, EGFR and MMP-9 pathways in subsets of PCa patients

    GLUL Ablation Can Confer Drug Resistance to Cancer Cells via a Malate-Aspartate Shuttle-Mediated Mechanism

    No full text
    Glutamate-ammonia ligase (GLUL) is important for acid-base homeostasis, ammonia detoxification, cell signaling, and proliferation. Here, we reported that GLUL ablation conferred resistance to several anticancer drugs in specific cancer cell lines while leaving other cell lines non-resistant to the same drugs. To understand the biochemical mechanics supporting this drug resistance, we compared drug-resistant GLUL knockout (KO) A549 non-small-cell lung carcinoma (NSCLC) cells with non-resistant GLUL KO H1299 NSCLC cells and found that the resistant A549 cells, to a larger extent, depended on exogenous glucose for proliferation. As GLUL activity is linked to the tricarboxylic acid (TCA) cycle via reversed glutaminolysis, we probed carbon flux through both glycolysis and TCA pathways by means of 13C5 glutamine, 13C5 glutamate, and 13C6 glucose tracing. We observed increased labeling of malate and aspartate in A549 GLUL KO cells, whereas the non-resistant GLUL KO H1299 cells displayed decreased 13C-labeling. The malate and aspartate shuttle supported cellular NADH production and was associated with cellular metabolic fitness. Inhibition of the malate-aspartate shuttle with aminooxyacetic acid significantly impacted upon cell viability with an IC50 of 11.5 ÎŒM in resistant GLUL KO A549 cells compared to 28 ÎŒM in control A549 cells, linking resistance to the malate-aspartate shuttle. Additionally, rescuing GLUL expression in A549 KO cells increased drug sensitivity. We proposed a novel metabolic mechanism in cancer drug resistance where the increased capacity of the malate-aspartate shuttle increased metabolic fitness, thereby facilitating cancer cells to escape drug pressure

    Increased levels of circulating and tumor-infiltrating granulocytic myeloid cells in colorectal cancer patients

    No full text
    Increased levels of myeloid cells, especially myeloid-derived suppressor cells (MDSCs), have been reported to correlate with bad prognosis and reduced survival in cancer patients. However, limited data are available on their conclusive phenotypes and their correlation with clinical settings. The aim of this study was to investigate levels and phenotype of myeloid cells in peripheral blood and tumor microenvironment of colorectal cancer (CRC) patients, compared to blood from healthy donors (HDs) and paired, adjacent non-tumor colon tissue. Flow cytometric analysis was performed to examine the expression of different myeloid markers in fresh peripheral blood samples from CRC patients and HDs, and tissue-infiltrating immune cells from CRC patients. We found significantly higher levels of cells expressing myeloid markers and lacking the expression of MHC class II molecule HLA-DR in blood and tumor of CRC patients. Further analysis revealed that these cells were granulocytic and expressed Arginase 1 (ARG1), indicative of their suppressive phenotype. These expanded cells could be neutrophils or granulocytic MDSCs, and we refer to them as granulocytic myeloid cells (GMCs) due to the phenotypical and functional overlap between these cell subsets. Interestingly, the expansion of peripheral GMCs correlated with higher stage and histological grade of cancer, thereby suggesting their role in cancer progression. Furthermore, an increase in CD33+CD11b+HLA-DR-CD14-CD15- immature myeloid cells (IMCs) was also observed in CRC tumor tissue. Our work shows that GMCs are expanded in circulation and tumor microenvironment of CRC patients, which provides further insights for developing immunotherapeutic approaches targeting these cell subsets to enhance anti-tumor immune and clinical responses

    Elevated level of Wnt5a protein in localized prostate cancer tissue is associated with better outcome.

    Get PDF
    BACKGROUND: Wnt5a is a non-canonical secreted glycoprotein of the Wnt family that plays an important role in cancer development and progression. Previous studies report that Wnt5a is upregulated in prostate cancer and suggested that Wnt5a affects migration and invasion of prostate tumor cell. This study aimed to evaluate the prognostic value of Wnt5a protein expression in prostate cancer tissue and its potential to predict outcome after radical prostatectomy in patients with localized prostate cancer. METHODOLOGY AND RESULTS: Immunohistochemical analysis of a tissue microarray containing prostate specimens of 503 patients with localized prostate cancer showed significantly higher Wnt5a protein expression in cancer compared to benign cores from the same patients (p<0.0001). Patients with high expression of Wnt5a protein had significantly better outcome in terms of time to biochemical recurrence compared to patients with low expression levels (p = 0.001, 95%CI 1.361-3.570, Hazard's ratio 2.204). A combination of high Wnt5a expression with low levels of Ki-67 or androgen receptor expression had even better outcome compared to all other groups. Furthermore, we found that Wnt5a expression significantly correlated with VEGF and with Ki-67 and androgen receptor expression, although not highly significant. In vitro, we demonstrated that recombinant Wnt5a decreased invasion of 22Rv1 and DU145 cells and that siRNA knockdown of endogenous Wnt5a protein led to increased invasion of 22Rv1 and LNCaP cells. CONCLUSION: We demonstrate that preserved overexpression of Wnt5a protein in patients with localized prostate cancer predicts a favorable outcome after surgery. This finding together with our in vitro data demonstrating the ability of Wnt5a to impair the invasive properties of prostate cancer cells, suggests a tumor suppressing effect of Wnt5a in localized prostate cancer. These results indicate that Wnt5a can be used as a predictive marker and that it also is a plausible therapeutic target for treatment of localized prostate cancer

    Cyclin A1 Modulates the Expression of Vascular Endothelial Growth Factor and Promotes Hormone-Dependent Growth and Angiogenesis of Breast Cancer

    Get PDF
    <div><p>Alterations in cellular pathways related to both endocrine and vascular endothelial growth factors (VEGF) may contribute to breast cancer progression. Inhibition of the elevated levels of these pathways is associated with clinical benefits. However, molecular mechanisms by which endocrine-related pathways and VEGF signalling cooperatively promote breast cancer progression remain poorly understood. In the present study, we show that the A-type cyclin, cyclin A1, known for its important role in the initiation of leukemia and prostate cancer metastasis, is highly expressed in primary breast cancer specimens and metastatic lesions, in contrasting to its barely detectable expression in normal human breast tissues. There is a statistically significant correlation between cyclin A1 and VEGF expression in breast cancer specimens from two patient cohorts (<i>p</i><0.01). Induction of cyclin A1 overexpression in breast cancer cell line MCF-7 results in an enhanced invasiveness and a concomitant increase in VEGF expression. In addition, there is a formation of protein–protein complexes between cyclin A1 and estrogen receptor ER-α cyclin A1 overexpression increases ER-α expression in MCF-7 and T47D cells. In mouse tumor xenograft models in which mice were implanted with MCF-7 cells that overexpressed cyclin A1 or control vector, cyclin A1 overexpression results in an increase in tumor growth and angiogenesis, which is coincident with an enhanced expression of VEGF, VEGFR1 and ER-α Our findings unravel a novel role for cyclin A1 in growth and progression of breast cancer, and suggest that multiple cellular pathways, including cell cycle regulators, angiogenesis and estrogen receptor signalling, may cooperatively contribute to breast cancer progression.</p> </div
    corecore