5 research outputs found

    Polymorphism of human haptoglobin and its clinical importance

    No full text
    Haptoglobin (Hp) is a plasma glycoprotein, the main biological function of which is to bind free hemoglobin (Hb) and prevent the loss of iron and subsequent kidney damage following intravascular hemolysis. Haptoglobin is also a positive acute-phase protein with immunomodulatory properties. In humans, the HP locus is polymorphic, with two codominant alleles (HP1 and HP2) that yield three distinct genotypes/phenotypes (Hp1-1, Hp2-1 and Hp2-2). The corresponding proteins have structural and functional differences that may influence the susceptibility and/or outcome in several diseases. This article summarizes the available data on the structure and functions of Hp and the possible effects of Hp polymorphism in a number of important human disorders

    Host–parasite co-evolution and its genomic signature

    No full text
    Studies in diverse biological systems have indicated that host-parasite co-evolution is responsible for the extraordinary genetic diversity seen in some genomic regions, such as major histocompatibility (MHC) genes in jawed vertebrates and resistance genes in plants. This diversity is believed to evolve under balancing selection on hosts by parasites. However, the mechanisms that link the genomic signatures in these regions to the underlying co-evolutionary process are only slowly emerging. We still lack a clear picture of the co-evolutionary concepts and of the genetic basis of the co-evolving phenotypic traits in the interacting antagonists. Emerging genomic tools that provide new options for identifying underlying genes will contribute to a fuller understanding of the co-evolutionary process
    corecore