7 research outputs found

    Discontinuous rock slope stability analysis under blocky structural sliding by fuzzy key-block analysis method

    Get PDF
    This study presents a fuzzy logical decision-making algorithm based on block theory to effectively determine discontinuous rock slope reliability under various wedge and planar slip scenarios. The algorithm was developed to provide rapid response operations without the need for extensive quantitative stability evaluations based on the rock slope sustainability ratio. The fuzzy key-block analysis method utilises a weighted rational decision (multi-criteria decision-making) function to prepare the 'degree of reliability (degree of stability-instability contingency)' for slopes as implemented through the Mathematica software package. The central and analyst core of the proposed algorithm is provided as based on discontinuity network geometrical uncertainties and hierarchical decision-making. This algorithm uses block theory principles to proceed to rock block classification, movable blocks and key-block identifications under ambiguous terms which investigates the sustainability ratio with accurate, quick and appropriate decisions especially for novice engineers in the context of discontinuous rock slope stability analysis. The method with very high precision and speed has particular matches with the existing procedures and has the potential to be utilised as a continuous decision-making system for discrete parameters and to minimise the need to apply common practises. In order to justify the algorithm, a number of discontinuous rock mass slopes were considered as examples. In addition, the SWedge, RocPlane softwares and expert assignments (25-member specialist team) were utilised for verification of the applied algorithm which led to a conclusion that the algorithm was successful in providing rational decision-making

    A Qslope-based empirical method to stability assessment of mountain rock slopes in multiple faults zone: A case for North of Tabriz

    Get PDF
    The present article provides an empirical relationship for rock slope stability assessment based on Qslope classification. The relationship is used as a correction procedure for classic Qslope for mountain regions with multiple fractures related to several faults. The relationship is derived from 25 distinct jointed slopes near the North Tabriz Fault (NTF). The NTF triggered numerous micro-faults and fractures in rocky landscapes, resulting in sliding on a variety of scales. The present empirical method is introduced based on a field survey and a stability analysis of the studied slopes based on Qslope principles. The results indicate that the classic formulation of Qslope can be modified to β = 62.6 log10 (Qslope) + 36 for mountain regions with multiple fault zones. • This empirical method can be useful for fast stability assessment on jointed rock slopes. • This relationship can use as a modification for the original formula in multiple faults zones

    Deep learning-based landslide susceptibility mapping

    Get PDF
    Landslides are considered as one of the most devastating natural hazards in Iran, causing extensive damage and loss of life. Landslide susceptibility maps for landslide prone areas can be used to plan for and mitigate the consequences of catastrophic landsliding events. Here, we developed a deep convolutional neural network (CNN–DNN) for mapping landslide susceptibility, and evaluated it on the Isfahan province, Iran, which has not previously been assessed on such a scale. The proposed model was trained and validated using training (80%) and testing (20%) datasets, each containing relevant data on historical landslides, field records and remote sensing images, and a range of geomorphological, geological, environmental and human activity factors as covariates. The CNN–DNN model prediction accuracy was tested using a wide range of statistics from the confusion matrix and error indices from the receiver operating characteristic (ROC) curve. The CNN–DNN model was evaluated comprehensively by comparing it to several state-of-the-art benchmark machine learning techniques including the support vector machine (SVM), logistic regression (LR), Gaussian naïve Bayes (GNB), multilayer perceptron (MLP), Bernoulli Naïve Bayes (BNB) and decision tree (DT) classifiers. The CNN–DNN model for landslide susceptibility mapping was found to predict more accurately than the benchmark algorithms, with an AUC = 90.9%, IRs = 84.8%, MSE = 0.17, RMSE = 0.40, and MAPE = 0.42. The map provided by the CNN–DNN clearly revealed a high-susceptibility area in the west and southwest, related to the main Zagros trend in the province. These findings can be of great utility for landslide risk management and land use planning in the Isfahan province

    Discontinuous rock slope stability analysis under blocky structural sliding by fuzzy key-block analysis method

    Get PDF
    This study presents a fuzzy logical decision-making algorithm based on block theory to effectively determine discontinuous rock slope reliability under various wedge and planar slip scenarios. The algorithm was developed to provide rapid response operations without the need for extensive quantitative stability evaluations based on the rock slope sustainability ratio. The fuzzy key-block analysis method utilises a weighted rational decision (multi-criteria decision-making) function to prepare the ‘degree of reliability (degree of stability-instability contingency)’ for slopes as implemented through the Mathematica software package. The central and analyst core of the proposed algorithm is provided as based on discontinuity network geometrical uncertainties and hierarchical decision-making. This algorithm uses block theory principles to proceed to rock block classification, movable blocks and key-block identifications under ambiguous terms which investigates the sustainability ratio with accurate, quick and appropriate decisions especially for novice engineers in the context of discontinuous rock slope stability analysis. The method with very high precision and speed has particular matches with the existing procedures and has the potential to be utilised as a continuous decision-making system for discrete parameters and to minimise the need to apply common practises. In order to justify the algorithm, a number of discontinuous rock mass slopes were considered as examples. In addition, the SWedge, RocPlane softwares and expert assignments (25-member specialist team) were utilised for verification of the applied algorithm which led to a conclusion that the algorithm was successful in providing rational decision-making

    Deep learning‑based landslide susceptibility mapping

    No full text
    Landslides are considered as one of the most devastating natural hazards in Iran, causing extensive damage and loss of life. Landslide susceptibility maps for landslide prone areas can be used to plan for and mitigate the consequences of catastrophic landsliding events. Here, we developed a deep convolutional neural network (CNN–DNN) for mapping landslide susceptibility, and evaluated it on the Isfahan province, Iran, which has not previously been assessed on such a scale. The proposed model was trained and validated using training (80%) and testing (20%) datasets, each containing relevant data on historical landslides, field records and remote sensing images, and a range of geomorphological, geological, environmental and human activity factors as covariates. The CNN–DNN model prediction accuracy was tested using a wide range of statistics from the confusion matrix and error indices from the receiver operating characteristic (ROC) curve. The CNN–DNN model was evaluated comprehensively by comparing it to several state-of-the-art benchmark machine learning techniques including the support vector machine (SVM), logistic regression (LR), Gaussian naïve Bayes (GNB), multilayer perceptron (MLP), Bernoulli Naïve Bayes (BNB) and decision tree (DT) classifiers. The CNN–DNN model for landslide susceptibility mapping was found to predict more accurately than the benchmark algorithms, with an AUC = 90.9%, IRs = 84.8%, MSE = 0.17, RMSE = 0.40, and MAPE = 0.42. The map provided by the CNN–DNN clearly revealed a high-susceptibility area in the west and southwest, related to the main Zagros trend in the province. These findings can be of great utility for landslide risk management and land use planning in the Isfahan province
    corecore