162 research outputs found

    Synergistic Antibacterial Effects of Metallic Nanoparticle Combinations

    Get PDF
    © The Author(s) 2019.Metallic nanoparticles have unique antimicrobial properties that make them suitable for use within medical and pharmaceutical devices to prevent the spread of infection in healthcare. The use of nanoparticles in healthcare is on the increase with silver being used in many devices. However, not all metallic nanoparticles can target and kill all disease-causing bacteria. To overcome this, a combination of several different metallic nanoparticles were used in this study to compare effects of multiple metallic nanoparticles when in combination than when used singly, as single elemental nanoparticles (SENPs), against two common hospital acquired pathogens (Staphylococcus aureus and Pseudomonas. aeruginosa). Flow cytometry LIVE/DEAD assay was used to determine rates of cell death within a bacterial population when exposed to the nanoparticles. Results were analysed using linear models to compare effectiveness of three different metallic nanoparticles, tungsten carbide (WC), silver (Ag) and copper (Cu), in combination and separately. Results show that when the nanoparticles are placed in combination (NPCs), antimicrobial effects significantly increase than when compared with SENPs (P < 0.01). This study demonstrates that certain metallic nanoparticles can be used in combination to improve the antimicrobial efficiency in destroying morphologically distinct pathogens within the healthcare and pharmaceutical industry.Peer reviewe

    DNA Clasping by Mycobacterial HU: The C-Terminal Region of HupB Mediates Increased Specificity of DNA Binding

    Get PDF
    BACKGROUND: HU a small, basic, histone like protein is a major component of the bacterial nucleoid. E. coli has two subunits of HU coded by hupA and hupB genes whereas Mycobacterium tuberculosis (Mtb) has only one subunit of HU coded by ORF Rv2986c (hupB gene). One noticeable feature regarding Mtb HupB, based on sequence alignment of HU orthologs from different bacteria, was that HupB(Mtb) bears at its C-terminal end, a highly basic extension and this prompted an examination of its role in Mtb HupB function. METHODOLOGY/PRINCIPAL FINDINGS: With this objective two clones of Mtb HupB were generated; one expressing full length HupB protein (HupB(Mtb)) and another which expresses only the N terminal region (first 95 amino acid) of hupB (HupB(MtbN)). Gel retardation assays revealed that HupB(MtbN) is almost like E. coli HU (heat stable nucleoid protein) in terms of its DNA binding, with a binding constant (K(d)) for linear dsDNA greater than 1000 nM, a value comparable to that obtained for the HUalphaalpha and HUalphabeta forms. However CTR (C-terminal Region) of HupB(Mtb) imparts greater specificity in DNA binding. HupB(Mtb) protein binds more strongly to supercoiled plasmid DNA than to linear DNA, also this binding is very stable as it provides DNase I protection even up to 5 minutes. Similar results were obtained when the abilities of both proteins to mediate protection against DNA strand cleavage by hydroxyl radicals generated by the Fenton's reaction, were compared. It was also observed that both the proteins have DNA binding preference for A:T rich DNA which may occur at the regulatory regions of ORFs and the oriC region of Mtb. CONCLUSIONS/SIGNIFICANCE: These data thus point that HupB(Mtb) may participate in chromosome organization in-vivo, it may also play a passive, possibly an architectural role

    Survival of patients treated with intra-aortic balloon counterpulsation at a tertiary care center in Pakistan – patient characteristics and predictors of in-hospital mortality

    Get PDF
    BACKGROUND: Intra-aortic balloon counterpulsation (IABC) has an established role in the treatment of patients presenting with critical cardiac illnesses, including cardiogenic shock, refractory ischemia and for prophylaxis and treatment of complications of percutaneous coronary interventions (PCI). Patients requiring IABC represent a high-risk subset with an expected high mortality. There are virtually no data on usage patterns as well as outcomes of patients in the Indo-Pakistan subcontinent who require IABC. This is the first report on a sizeable experience with IABC from Pakistan. METHODS: Hospital charts of 95 patients (mean age 58.8 (± 10.4) years; 78.9% male) undergoing IABC between 2000–2002 were reviewed. Logistic regression was used to determine univariate and multivariate predictors of in-hospital mortality. RESULTS: The most frequent indications for IABC were cardiogenic shock (48.4%) and refractory ischemia (24.2%). Revascularization (surgical or PCI) was performed in 74 patients (77.9%). The overall in-hospital mortality rate was 34.7%. Univariate predictors of in-hospital mortality included (odds ratio [95% CI]) age (OR 1.06 [1.01–1.11] for every year increase in age); diabetes (OR 3.68 [1.51–8.92]) and cardiogenic shock at presentation (OR 4.85 [1.92–12.2]). Furthermore, prior CABG (OR 0.12 [0.04–0.34]), and in-hospital revascularization (OR 0.05 [0.01–0.189]) was protective against mortality. In the multivariate analysis, independent predictors of in-hospital mortality were age (OR 1.13 [1.05–1.22] for every year increase in age); diabetes (OR 6.35 [1.61–24.97]) and cardiogenic shock at presentation (OR 10.0 [2.33–42.95]). Again, revascularization during hospitalization (OR 0.02 [0.003–0.12]) conferred a protective effect. The overall complication rate was low (8.5%). CONCLUSIONS: Patients requiring IABC represent a high-risk group with substantial in-hospital mortality. Despite this high mortality, over two-thirds of patients do leave the hospital alive, suggesting that IABC is a feasible therapeutic device, even in a developing country

    Photoactivatable drugs for nicotinic optopharmacology

    Get PDF
    Photoactivatable pharmacological agents have revolutionized neuroscience, but the palette of available compounds is limited. We describe a general method for caging tertiary amines by using a stable quaternary ammonium linkage that elicits a red shift in the activation wavelength. We prepared a photoactivatable nicotine (PA-Nic), uncageable via one- or two-photon excitation, that is useful to study nicotinic acetylcholine receptors (nAChRs) in different experimental preparations and spatiotemporal scales

    Effects of Engineered Nanoparticles on the Assembly of Exopolymeric Substances from Phytoplankton

    Get PDF
    The unique properties of engineered nanoparticles (ENs) that make their industrial applications so attractive simultaneously raise questions regarding their environmental safety. ENs exhibit behaviors different from bulk materials with identical chemical compositions. Though the nanotoxicity of ENs has been studied intensively, their unintended environmental impacts remain largely unknown. Herein we report experimental results of EN interactions with exopolymeric substances (EPS) from three marine phytoplankton species: Amphora sp., Ankistrodesmus angustus and Phaeodactylum tricornutum. EPS are polysaccharide-rich anionic colloid polymers released by various microorganisms that can assemble into microgels, possibly by means of hydrophobic and ionic mechanisms. Polystyrene nanoparticles (23 nm) were used in our study as model ENs. The effects of ENs on EPS assembly were monitored with dynamic laser scattering (DLS). We found that ENs can induce significant acceleration in Amphora sp. EPS assembly; after 72 hours EN-EPS aggregation reached equilibrium, forming microscopic gels of ∼4–6 µm in size. In contrast, ENs only cause moderate assembly kinetic acceleration for A. angustus and P. tricornutum EPS samples. Our results indicate that the effects of ENs on EPS assembly kinetics mainly depend on the hydrophobic interactions of ENs with EPS polymers. The cycling mechanism of EPS is complex. Nonetheless, the change of EPS assembly kinetics induced by ENs can be considered as one potential disturbance to the marine carbon cycle

    In-Vitro Helix Opening of M. tuberculosis oriC by DnaA Occurs at Precise Location and Is Inhibited by IciA Like Protein

    Get PDF
    BACKGROUND: Mycobacterium tuberculosis (M.tb), the pathogen that causes tuberculosis, is capable of staying asymptomatically in a latent form, persisting for years in very low replicating state, before getting reactivated to cause active infection. It is therefore important to study M.tb chromosome replication, specifically its initiation and regulation. While the region between dnaA and dnaN gene is capable of autonomous replication, little is known about the interaction between DnaA initiator protein, oriC origin of replication sequences and their negative effectors of replication. METHODOLOGY/PRINCIPAL FINDINGS: By KMnO(4) mapping assays the sequences involved in open complex formation within oriC, mediated by M.tb DnaA protein, were mapped to position -500 to -518 with respect to the dnaN gene. Contrary to E. coli, the M.tb DnaA in the presence of non-hydrolysable analogue of ATP (ATPgammaS) was unable to participate in helix opening thereby pointing to the importance of ATP hydrolysis. Interestingly, ATPase activity in the presence of supercoiled template was higher than that observed for DnaA box alone. M.tb rRv1985c, a homologue of E.coli IciA (Inhibitor of chromosomal initiation) protein, could inhibit DnaA-mediated in-vitro helix opening by specifically binding to A+T rich region of oriC, provided the open complex formation had not initiated. rIciA could also inhibit in-vitro replication of plasmid carrying the M.tb origin of replication. CONCLUSIONS/SIGNIFICANCE: These results have a bearing on the functional role of the important regulator of M.tb chromosomal replication belonging to the LysR family of bacterial regulatory proteins in the context of latency

    Proteomic analysis of Salmonella enterica serovar Enteritidis following propionate adaptation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Salmonella </it>Enteritidis is a highly prevalent and persistent foodborne pathogen and is therefore a leading cause of nontyphoidal gastrointestinal disease worldwide. A variety of stresses are endured throughout its infection cycle, including high concentrations of propionate (PA) within food processing systems and within the gut of infected hosts. Prolonged PA exposure experienced in such milieus may have a drastic effect on the proteome of <it>Salmonella </it>Enteritidis subjected to this stress.</p> <p>Results</p> <p>In this study, we used 2 D gel electrophoresis to examine the proteomes of PA adapted and unadapted <it>S</it>. Enteritidis and have identified five proteins that are upregulated in PA adapted cultures using standard peptide mass fingerprinting by MALDI-TOF-MS and sequencing by MALDI LIFT-TOF/TOF tandem mass spectrometry. Of these five, two significant stress-related proteins (Dps and CpxR) were shown (via qRT-PCR analysis) to be upregulated at the transcriptional level as well. Unlike the wild type when adapted to PA (which demonstrates significant acid resistance), PA adapted <it>S</it>. Enteritidis ∆<it>dps </it>and <it>S</it>. Enteritidis ∆<it>cpxR </it>were at a clear disadvantage when challenged to a highly acidic environment. However, we found the acid resistance to be fully restorable after genetic complementation.</p> <p>Conclusions</p> <p>This work reveals a significant difference in the proteomes of PA adapted and unadapted <it>S</it>. Enteritidis and affirms the contribution of Dps and CpxR in PA induced acid resistance.</p

    Virulence Regulator EspR of Mycobacterium tuberculosis Is a Nucleoid-Associated Protein

    Get PDF
    The principal virulence determinant of Mycobacterium tuberculosis (Mtb), the ESX-1 protein secretion system, is positively controlled at the transcriptional level by EspR. Depletion of EspR reportedly affects a small number of genes, both positively or negatively, including a key ESX-1 component, the espACD operon. EspR is also thought to be an ESX-1 substrate. Using EspR-specific antibodies in ChIP-Seq experiments (chromatin immunoprecipitation followed by ultra-high throughput DNA sequencing) we show that EspR binds to at least 165 loci on the Mtb genome. Included in the EspR regulon are genes encoding not only EspA, but also EspR itself, the ESX-2 and ESX-5 systems, a host of diverse cell wall functions, such as production of the complex lipid PDIM (phenolthiocerol dimycocerosate) and the PE/PPE cell-surface proteins. EspR binding sites are not restricted to promoter regions and can be clustered. This suggests that rather than functioning as a classical regulatory protein EspR acts globally as a nucleoid-associated protein capable of long-range interactions consistent with a recently established structural model. EspR expression was shown to be growth phase-dependent, peaking in the stationary phase. Overexpression in Mtb strain H37Rv revealed that EspR influences target gene expression both positively or negatively leading to growth arrest. At no stage was EspR secreted into the culture filtrate. Thus, rather than serving as a specific activator of a virulence locus, EspR is a novel nucleoid-associated protein, with both architectural and regulatory roles, that impacts cell wall functions and pathogenesis through multiple genes

    Motivational determinants among physicians in Lahore, Pakistan

    Get PDF
    Introduction: Human resource crises in developing countries have been identified as a critical aspect of poor quality and low accessibility in health care. Worker motivation is an important facet of this issue. Specifically, motivation among physicians, who are an important bridge between health systems and patients, should be considered. This study aimed to identify the determinants of job motivation among physicians, a neglected perspective, especially in developing countries. Methods: A stratified random sample of 360 physicians was selected from public primary, public secondary and public and private tertiary health facilities in the Lahore district, Pakistan. Pretested, semi-structured, self-administered questionnaires were used. For the descriptive part of this study, physicians were asked to report their 5 most important work motivators and demotivators within the context of their current jobs and in general. Responses were coded according to emergent themes and frequencies calculated. Of the 30 factors identified, 10 were classified as intrinsic, 16 as organizational and 4 as socio-cultural. Results: Intrinsic and socio-cultural factors like serving people, respect and career growth were important motivators. Conversely, demotivators across setups were mostly organizational, especially in current jobs. Among these, less pay was reported the most frequently. Fewer opportunities for higher qualifications was a demotivator among primary and secondary physicians. Less personal safety and poor working conditions were important in the public sector, particularly among female physicians. Among private tertiary physicians financial incentives other than pay and good working conditions were motivators in current jobs. Socio-cultural and intrinsic factors like less personal and social time and the inability to financially support oneself and family were more important among male physicians. Conclusion: Motivational determinants differed across different levels of care, sectors and genders. Nonetheless, the important motivators across setups in this study were mostly intrinsic and socio-cultural, which are difficult to affect while the demotivators were largely organizational. Many can be addressed even at the facility level such as less personal safety and poor working conditions. Thus, in resource limited settings a good strategic starting point could be small scale changes that may markedly improve physicians' motivation and subsequently the quality of health care
    corecore