42 research outputs found

    Dietary t10,c12-CLA but not c9,t11 CLA Reduces Adipocyte Size in the Absence of Changes in the Adipose Renin–Angiotensin System in fa/fa Zucker Rats

    Get PDF
    In obesity, increased activity of the local renin–angiotensin system (RAS) and enlarged adipocytes with altered adipokine production are linked to the development of obesity-related health problems and cardiovascular disease. Mixtures of conjugated linoleic acid (CLA) isomers have been shown to reduce adipocyte size and alter the production of adipokines. The objective of this study was to investigate the effects of feeding individual CLA isomers on adipocyte size and adipokines associated with the local adipose RAS. Male fa/fa Zucker rats received either (a) control, (b) cis(c)9,trans(t)11-CLA, or (c) t10,c12-CLA diet for 8 weeks. The t10,c12-CLA isomer reduced adipocyte size and increased cell number in epididymal adipose tissue. RT-PCR and Western blot analysis revealed that neither CLA isomer altered mRNA or protein levels of angiotensinogen or AngII receptors in adipose tissue. Likewise, levels of the pro-inflammatory cytokines TNF-α and IL-6 or the anti-inflammatory cytokine IL-10 were unchanged in adipose tissue. Similarly, neither CLA isomer had any effect on phosphorylation nor DNA binding of NF-ÎșB. Our results suggest that although the t10,c12-CLA isomer had beneficial effects on reducing adipocyte size in obese rats, this did not translate into changes in the local adipose RAS or associated adipokines

    Adipose depots differ in cellularity, adipokines produced, gene expression, and cell systems

    No full text
    The race to manage the health concerns related to excess fat deposition has spawned a proliferation of clinical and basic research efforts to understand variables including dietary uptake, metabolism, and lipid deposition by adipocytes. A full appreciation of these variables must also include a depot-specific understanding of content and location in order to elucidate mechanisms governing cellular development and regulation of fat deposition. Because adipose tissue depots contain various cell types, differences in the cellularity among and within adipose depots are presently being documented to ascertain functional differences. This has led to the possibility of there being, within any one adipose depot, cellular distinctions that essentially result in adipose depots within depots. The papers comprising this issue will underscore numerous differences in cellularity (development, histogenesis, growth, metabolic function, regulation) of different adipose depots. Such information is useful in deciphering adipose depot involvement both in normal physiology and in pathology. Obesity, diabetes, metabolic syndrome, carcass composition of meat animals, performance of elite athletes, physiology/pathophysiology of aging, and numerous other diseases might be altered with a greater understanding of adipose depots and the cells that comprise them—including stem cells—during initial development and subsequent periods of normal/abnormal growth into senescence. Once thought to be dormant and innocuous, the adipocyte is emerging as a dynamic and influential cell and research will continue to identify complex physiologic regulation of processes involved in adipose depot physiology
    corecore