11 research outputs found

    Prolactin signaling and Stat5: going their own separate ways?

    Get PDF
    Miyoshi et al. compared the role of the prolactin receptor (PrlR) and its downstream mediator, the signal transducer and activator of transcription 5 (Stat5), in mammary epithelial cells in vivo by studying PrlR(-/-) and Stat5ab(-/-) mouse mammary epithelial transplants during pregnancy. At first glance, the two mutant epithelia appear to have similar defects in the differentiation of the alveolar epithelium. However, a closer examination by Miyoshi et al. revealed defects in the epithelial architecture of the smallest ducts of Stat5ab(-/-) transplants not apparent in the PrlR(-/-) transplants, suggesting that Stat5 is more than a simple mediator of PrlR action

    Progesterone and Wnt4 control mammary stem cells via myoepithelial crosstalk

    Get PDF
    Ovarian hormones increase breast cancer risk by poorly understood mechanisms. We assess the role of progesterone on global stem cell function by serially transplanting mouse mammary epithelia. Progesterone receptor (PR) deletion severely reduces the regeneration capacity of the mammary epithelium. The PR target, receptor activator of Nf-kB ligand (RANKL), is not required for this function, and the deletion of Wnt4 reduces the mammary regeneration capacity even more than PR ablation. A fluorescent reporter reveals so far undetected perinatal Wnt4 expression that is independent of hormone signaling. Pubertal and adult Wnt4 expression is specific to PR+ luminal cells and requires intact PR signaling. Conditional deletion of Wnt4 reveals that this early, previously unappreciated, Wnt4 expression is functionally important. We provide genetic evidence that canonical Wnt signaling in the myoepithelium required PR and Wnt4, whereas the canonical Wnt signaling activities observed in the embryonic mammary bud and in the stroma around terminal end buds are independent of Wnt4. Thus, progesterone and Wnt4 control stem cell function through a luminal-myoepithelial crosstalk with Wnt4 acting independent of PR perinatally

    Perinatal exposure to bisphenol A increases adult mammary gland progesterone response and cell number

    Get PDF
    Bisphenol A [BPA, 2,2,-bis (hydroxyphenyl) propane] is one of the highest-volume chemicals produced worldwide. It is detected in body fluids of more than 90% of the human population. Originally synthesized as an estrogenic compound, it is currently utilized to manufacture food and beverage containers resulting in uptake with food and drinks. There is concern that exposure to low doses of BPA, defined as less than or equal to 5 mg/kg body weight /d, may have developmental effects on various hormone-responsive organs including the mammary gland. Here, we asked whether perinatal exposure to a range of low doses of BPA is sufficient to alter mammary gland hormone response later on in life, with a possible impact on breast cancer risk. To mimic human exposure, we added BPA to the drinking water of C57/Bl6 breeding pairs. Analysis of the mammary glands of their daughters at puberty showed that estrogen-dependent transcriptional events were perturbed and the number of terminal end buds, estrogen-induced proliferative structures, was altered in a dose-dependent fashion. Importantly, adult females showed an increase in mammary epithelial cell numbers comparable to that seen in females exposed to diethylbestrol, a compound exposure to which was previously linked to increased breast cancer risk. Molecularly, the mRNAs encoding Wnt-4 and receptor activator of nuclear factor kB ligand, two key mediators of hormone function implicated in control of mammary stem cell proliferation and carcinogenesis, showed increased induction by progesterone in the mammary tissue of exposed mice. Thus, perinatal exposure to environmentally relevant doses of BPA alters long-term hormone response that may increase the propensity to develop breast cancer. © 2011 by The Endocrine Society.Swiss Science Foundation (NRP50); Swiss Federal Public Health Offic

    Intraductal xenografts show lobular carcinoma cells rely on their own extracellular matrix and LOXL1.

    No full text
    Invasive lobular carcinoma (ILC) is the most frequent special histological subtype of breast cancer, typically characterized by loss of E-cadherin. It has clinical features distinct from other estrogen receptor-positive (ER <sup>+</sup> ) breast cancers but the molecular mechanisms underlying its characteristic biology are poorly understood because we lack experimental models to study them. Here, we recapitulate the human disease, including its metastatic pattern, by grafting ILC-derived breast cancer cell lines, SUM-44 PE and MDA-MB-134-VI cells, into the mouse milk ducts. Using patient-derived intraductal xenografts from lobular and non-lobular ER <sup>+</sup> HER2 <sup>-</sup> tumors to compare global gene expression, we identify extracellular matrix modulation as a lobular carcinoma cell-intrinsic trait. Analysis of TCGA patient datasets shows matrisome signature is enriched in lobular carcinomas with overexpression of elastin, collagens, and the collagen modifying enzyme LOXL1. Treatment with the pan LOX inhibitor BAPN and silencing of LOXL1 expression decrease tumor growth, invasion, and metastasis by disrupting ECM structure resulting in decreased ER signaling. We conclude that LOXL1 inhibition is a promising therapeutic strategy for ILC

    The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells

    Get PDF
    SummaryThe epithelial-mesenchymal transition (EMT) is a key developmental program that is often activated during cancer invasion and metastasis. We here report that the induction of an EMT in immortalized human mammary epithelial cells (HMLEs) results in the acquisition of mesenchymal traits and in the expression of stem-cell markers. Furthermore, we show that those cells have an increased ability to form mammospheres, a property associated with mammary epithelial stem cells. Independent of this, stem cell-like cells isolated from HMLE cultures form mammospheres and express markers similar to those of HMLEs that have undergone an EMT. Moreover, stem-like cells isolated either from mouse or human mammary glands or mammary carcinomas express EMT markers. Finally, transformed human mammary epithelial cells that have undergone an EMT form mammospheres, soft agar colonies, and tumors more efficiently. These findings illustrate a direct link between the EMT and the gain of epithelial stem cell properties

    RNA sequencing-based single sample predictors of molecular subtype and risk of recurrence for clinical assessment of early-stage breast cancer

    Get PDF
    Multigene assays for molecular subtypes and biomarkers can aid management of early invasive breast cancer. Using RNA-sequencing we aimed to develop single-sample predictor (SSP) models for clinical markers, subtypes, and risk of recurrence (ROR). A cohort of 7743 patients was divided into training and test set. We trained SSPs for subtypes and ROR assigned by nearest-centroid (NC) methods and SSPs for biomarkers from histopathology. Classifications were compared with Prosigna in two external cohorts (ABiM, n = 100 and OSLO2-EMIT0, n = 103). Prognostic value was assessed using distant recurrence-free interval. Agreement between SSP and NC for PAM50 {five subtypes) was high (85%, Kappa = 0.78) for Subtype (four subtypes) very high {90%, Kappa = 0.84) and for ROR risk category high (84%, Kappa = 0.75, weighted Kappa = 0.90). Prognostic value was assessed as equivalent and clinically relevant. Agreement with histopathology was very high or high for receptor status, while moderate for Ki67 status and poor for Nottingham histological grade. SSP and Prosigna concordance was high for subtype (OSLO-EMIT0 83%, Kappa = 0.73 and ABiM 80%, Kappa = 0.72) and moderate and high for ROR risk category (68 and 84%, Kappa = 0.50 and 0.70, weighted Kappa = 0.70 and 0.78). Pooled concordance for emulated treatment recommendation dichotomized for chemotherapy was high (85%, Kappa = 0.66). Retrospective evaluation suggested that SSP application could change chemotherapy recommendations for up to 17% of postmenopausal ER+/HER2-/N0 patients with balanced escalation and de-escalation. Results suggest that NC and SSP models are interchangeable on a group-level and nearly so on a patient level and that SSP models can be derived to closely match clinical tests
    corecore