57 research outputs found
Femtosecond self-doubling optical parametric oscillator based on KTiOAsO4
Cataloged from PDF version of article.We report a femtosecond intracavity-frequency-doubled optical parametric oscillator that employs a single KTiOAsO4 crystal for both parametric generation and frequency doubling. This device generates a yellow output beam at 575 nm with 39.4% power conversion efficiency when synchronously pumped by a femtosecond Ti :sapphire laser at a wavelength of 796 run. An intracavity retarder is employed to alleviate temporal pulse overlap problems associated with group velocity mismatch inside the KTiOAsO4 crystal
Simultaneous phase matching of optical parametric oscillation and second harmonic generation in a periodically-poled lithium niobate
Cataloged from PDF version of article.We report a simple ad hoc method for designing an aperiodic grating structure to quasi-phase match two arbitrary
second-order nonlinear processes simultaneously within the same electric-field-poled crystal. This
method also allows the relative strength of the two processes to be adjusted freely, thereby enabling maximization
of the overall conversion efficiency. We also report an experiment that is based on an aperiodically
poled lithium niobate crystal that was designed by use of our method. In this crystal, parametric oscillation
and second-harmonic generation are simultaneously phase matched for upconversion of a femtosecond Ti:sapphire
laser to 570 nm. This self-doubling optical parametric oscillator provides an experimental verification of
our design method. © 2003 Optical Society of Americ
Phase matched self-doubling optical parametric oscillator
Cataloged from PDF version of article.We report a synchronously pumped intracavity frequency-doubled optical parametric oscillator that employs a
single KTiOPO4 crystal for both parametric generation and frequency doubling. Both nonlinear processes are
phase matched for the same direction of propagation in the crystal. The parametric oscillator, pumped by a
femtosecond Ti:sapphire laser at a wavelength of 745 nm, generates a green output beam at 540 nm with a
29% power conversion efficiency. Angle tuning in conjunction with pump wavelength tuning provides output
tunability in the 530–585-nm range. 1997 Optical Society of Americ
Single-crystal sum-frequency-generating optical parametric oscillator
Cataloged from PDF version of article.We report a synchronously pumped optical parametric oscillator that generates the sum frequency of the pump and the signal wavelengths. A single KTiOPO4 (KTP) crystal is used for both parametric generation and sum-frequency generation in which these two processes are simultaneously phase matched for the same direction of propagation. The parametric oscillator, pumped by a femtosecond Ti:sapphire laser at a wavelength of 827 nm, generates a blue output beam at 487 nm with 43% power-conversion efficiency. The polarization geometry of simultaneous phase matching requires rotation of the pump polarization before the cavity. Adjusting the group delay between the two orthogonally polarized pump components to compensate for the group-velocity mismatch in the KTP crystal increases the photon-conversion efficiency more than threefold. Angle tuning in conjunction with pump wavelength tuning provides output: tunability in the 484-512-nm range. A planewave model that takes group-velocity mismatch into account is in good agreement with our experimental results. (C) 1999 Optical Society of America [S0740-3224(99)01309-0]
Solar-blind AlGaN-based Schottky photodiodes with low noise and high detectivity
Cataloged from PDF version of article.We report on the design, fabrication, and characterization of solar-blind Schottky photodiodes with low noise and high detectivity. The devices were fabricated on n-/n+ AlGaN/GaN heterostructures using a microwave compatible fabrication process. True solar-blind operation with a cutoff wavelength of similar to274 nm was achieved with Al(x)Ga(1-x)N (x=0.38) absorption layer. The solar-blind detectors exhibited <1.8 nA/cm(2) dark current density in the 0-25 V reverse bias regime, and a maximum quantum efficiency of 42% around 267 nm. The photovoltaic detectivity of the devices were in excess of 2.6x10(12) cm Hz(1/2)/W, and the detector noise was 1/f limited with a noise power density less than 3x10(-29) A(2)/Hz at 10 kHz. (C) 2002 American Institute of Physics
High-Speed InSb Photodetectors on GaAs for Mid-IR Applications
Cataloged from PDF version of article.We report p-i-n type InSb-based high-speed photodetectors grown on GaAs substrate. Electrical and optical properties of photodetectors with active areas ranging from 7.06 x 10(-6) cm(2) to 2.25 x 10(-4) cm(2) measured at 77 K and room temperature. Detectors had high zero-bias differential resistances, and the differential resistance area product was 4.5 Omega cm(2). At 77 K, spectral measurements yielded high responsivity between 3 and 5 mum with the cutoff wavelength of 5.33 mum. The maximum responsivity for 80-mum diameter detectors was 1.00x10(5) V/W at 4.35 mum while the detectivity was 3.41x10(9) cm Hz(1/2) /W. High-speed measurements were done at room temperature. An optical parametric oscillator was used to generate picosecond full-width at half-maximum pulses at 2.5 mum with the pump at 780 nm. 30-mum diameter photodetectors yielded 3-dB bandwidth of 8.5 GHz at 2.5 V bias
High-speed visible-blind GaN-based indium-tin-oxide Schottky photodiodes
Cataloged from PDF version of article.We have fabricated GaN-based high-speed ultraviolet Schottkyphotodiodes using indium–tin–oxide (ITO) Schottky contacts. Before devicefabrication, the optical transparency of thin ITO films in the visible-blind spectrum was characterized via transmission and reflection measurements. The devices were fabricated on n−/n+GaN epitaxial layers using a microwave compatible fabrication process. Our ITO Schottkyphotodiode samples exhibited a maximum quantum efficiency of 47% around 325 nm. Time-based pulse-response measurements were done at 359 nm. The fabricateddevices exhibited a rise time of 13 ps and a pulse width of 60 ps.
© 2001 American Institute of Physic
High-speed solar-blind photodetectors with indium-tin-oxide Schottky Contacts
Cataloged from PDF version of article.We report AlGaN/GaN-based high-speed solar-blind photodetectors with indium-tin-oxide Schottky contacts. Current-voltage, spectral responsivity, and high-frequency response characterizations were performed on the fabricated Schottky photodiodes. Low dark currents of <1 pA at 20 V reverse bias and breakdown voltages larger than 40 V were obtained. A maximum responsivity of 44 mA/W at 263 nm was measured, corresponding to an external quantum efficiency of 21%. True solar-blind detection was ensured with a cutoff wavelength of 274 nm. Time-based high-frequency measurements at 267 nm resulted in pulse responses with rise times and pulse-widths as short as 13 and 190 ps, respectively. The corresponding 3-dB bandwidth was calculated as 1.10 GHz. (C) 2003 American Institute of Physics
High bandwidth-efficiency solar-blind AlGaN Schottky photodiodes with low dark current
Cataloged from PDF version of article.Al0.38Ga0.62N/GaN heterojunction solar-blind Schottky photodetectors with low dark current, high responsivity, and fast pulse
response were demonstrated. A five-step microwave compatible fabrication process was utilized to fabricate the devices. The solarblind
detectors displayed extremely low dark current values: 30lm diameter devices exhibited leakage current below 3 fA under
reverse bias up to 12V. True solar-blind operation was ensured with a sharp cut-off around 266 nm. Peak responsivity of
147mA/W was measured at 256 nm under 20 V reverse bias. A visible rejection more than 4 orders of magnitude was achieved.
The thermally-limited detectivity of the devices was calculated as 1.8 · 1013 cmHz1/2W 1
. Temporal pulse response measurements
of the solar-blind detectors resulted in fast pulses with high 3-dB bandwidths. The best devices had 53 ps pulse-width and 4.1GHz
bandwidth. A bandwidth-efficiency product of 2.9GHz was achieved with the AlGaN Schottky photodiodes. (C) 2004 Elsevier Ltd. All rights reserve
Implementing just climate adaptation policy: An analysis of recognition, framing, and advocacy coalitions in Boston, U.S.A.
Cities face intersectional challenges implementing climate adaptation policy. This research contributes to scholarship dedicated to understanding how policy implementation affects socially vulnerable groups, with the overarching goal of promoting justice and equity in climate policy implementation. We apply a novel framework that integrates social justice theory and the advocacy coalition framework to incrementally assess just climate adaptation in Boston, Massachusetts in the United States. Boston made an ambitious commitment to address equity as part of its climate planning and implementation efforts. In this paper, we evaluate the first implementation stage over the period 2016–2019 during which Boston developed coastal resilience plans for three neighborhoods. Despite Boston\u27s commitment to equity, we find injustice was nevertheless reproduced through representation and coalition dynamics, the framing of problems and solutions, and a failure to recognize the priorities and lived experiences of city residents. The assessment framework presented can be adapted to evaluate how other climate adaptation initiatives advance social justice and highlights the need for incremental evaluation over short time periods to inform ongoing implementation efforts
- …