862 research outputs found
Recommended from our members
Use of computer-aided detection (CAD) tools in screening mammography: a multidisciplinary investigation
We summarise a set of analyses and studies conducted to assess the effects of the use of a computer-aided detection (CAD) tool in breast screening. We have used an interdisciplinary approach that combines: (a) statistical analyses inspired by reliability modelling in engineering; (b) experimental studies of decisions of mammography experts using the tool, interpreted in the light of human factors psychology; and (c) ethnographic observations of the use of the tool both in trial conditions and in everyday screening practice. Our investigations have shown patterns of human behaviour and effects of computer-based advice that would not have been revealed by a standard clinical trial approach. For example, we found that the negligible measured effect of CAD could be explained by a range of effects on experts' decisions, beneficial in some cases and detrimental in others. There is some evidence of the latter effects being due to the experts using the computer tool differently from the intentions of the developers. We integrate insights from the different pieces of evidence and highlight their implications for the design, evaluation and deployment of this sort of computer tool
Microscopic expressions for the thermodynamic temperature
We show that arbitrary phase space vector fields can be used to generate
phase functions whose ensemble averages give the thermodynamic temperature. We
describe conditions for the validity of these functions in periodic boundary
systems and the Molecular Dynamics (MD) ensemble, and test them with a
short-ranged potential MD simulation.Comment: 21 pages, 2 figures, Revtex. Submitted to Phys. Rev.
Recommended from our members
Retrospective Evaluations of Sequences: Testing the Predictions of a Memory-based Analysis
Retrospective evaluation (RE) of event sequences are known to be biased in various ways. The present paper presents a series of studies that examined the suggestion that the moments that are the most accessible in memory at the point of RE contribute to these biases. As predicted by this memory-based analysis, Experiment 1 showed that pleasantness ratings of word lists were biased by the presentation position of a negative item and by how easy the negative information was to retrieve. Experiment 2 ruled out the hypothesis that these findings were due to the dual nature of the task called upon. Experiment 3 further manipulated the memorability of the negative items—and corresponding changes in RE were as predicted. Finally, Experiment 4 extended the findings to more complex stimuli involving event narratives. Overall, the results suggest that assessments were adjusted based on the retrieval of the most readily available information
Orientational Ordering in Spatially Disordered Dipolar Systems
This letter addresses basic questions concerning ferroelectric order in
positionally disordered dipolar materials. Three models distinguished by dipole
vectors which have one, two or three components are studied by computer
simulation. Randomly frozen and dynamically disordered media are considered. It
is shown that ferroelectric order is possible in spatially random systems, but
that its existence is very sensitive to the dipole vector dimensionality and
the motion of the medium. A physical analysis of our results provides
significant insight into the nature of ferroelectric transitions.Comment: 4 pages twocolumn LATEX style. 4 POSTSCRIPT figures available from
[email protected]
RESPOND – A patient-centred programme to prevent secondary falls in older people presenting to the emergency department with a fall: Protocol for a mixed methods programme evaluation.
Background Programme evaluations conducted alongside randomised controlled trials (RCTs) have potential to enhance understanding of trial outcomes. This paper describes a multi-level programme evaluation to be conducted alongside an RCT of a falls prevention programme (RESPOND). Objectives 1) To conduct a process evaluation in order to identify the degree of implementation fidelity and associated barriers and facilitators. 2) To evaluate the primary intended impact of the programme: participation in fall prevention strategies, and the factors influencing participation. 3) To identify the factors influencing RESPOND RCT outcomes: falls, fall injuries and ED re-presentations. Methods/ Design Five hundred and twenty eight community-dwelling adults aged 60–90 years presenting to two EDs with a fall will be recruited and randomly assigned to the intervention or standard care group. All RESPOND participants and RESPOND clinicians will be included in the evaluation. A mixed methods design will be used and a programme logic model will frame the evaluation. Data will be sourced from interviews, focus groups, questionnaires, clinician case notes, recruitment records, participant-completed calendars, hospital administrative datasets, and audio-recordings of intervention contacts. Quantitative data will be analysed via descriptive and inferential statistics and qualitative data will be interpreted using thematic analysis. Discussion The RESPOND programme evaluation will provide information about contextual and influencing factors related to the RCT outcomes. The results will assist researchers, clinicians, and policy makers to make decisions about future falls prevention interventions. Insights gained are likely to be transferable to preventive health programmes for a range of chronic conditions
Ferroelectric and Dipolar Glass Phases of Non-Crystalline Systems
In a recent letter [Phys. Rev. Lett. {\bf 75}, 2360 (1996)] we briefly
discussed the existence and nature of ferroelectric order in positionally
disordered dipolar materials. Here we report further results and give a
complete description of our work. Simulations of randomly frozen and
dynamically disordered dipolar soft spheres are used to study ferroelectric
ordering in non-crystalline systems. We also give a physical interpretation of
the simulation results in terms of short- and long-range interactions. Cases
where the dipole moment has 1, 2, and 3 components (Ising, XY and XYZ models,
respectively) are considered. It is found that the Ising model displays
ferroelectric phases in frozen amorphous systems, while the XY and XYZ models
form dipolar glass phases at low temperatures. In the dynamically disordered
model the equations of motion are decoupled such that particle translation is
completely independent of the dipolar forces. These systems spontaneously
develop long-range ferroelectric order at nonzero temperature despite the
absence of any fined-tuned short-range spatial correlations favoring dipolar
order. Furthermore, since this is a nonequilibrium model we find that the
paraelectric to ferroelectric transition depends on the particle mass. For the
XY and XYZ models, the critical temperatures extrapolate to zero as the mass of
the particle becomes infinite, whereas, for the Ising model the critical
temperature is almost independent of mass and coincides with the ferroelectric
transition found for the randomly frozen system at the same density. Thus in
the infinite mass limit the results of the frozen amorphous systems are
recovered.Comment: 25 pages (LATEX, no macros). 11 POSTSCRIPT figures enclosed.
Submitted to Phisical Review E. Contact: [email protected]
Hot Streaks in Artistic, Cultural, and Scientific Careers
The hot streak, loosely defined as winning begets more winnings, highlights a
specific period during which an individual's performance is substantially
higher than her typical performance. While widely debated in sports, gambling,
and financial markets over the past several decades, little is known if hot
streaks apply to individual careers. Here, building on rich literature on
lifecycle of creativity, we collected large-scale career histories of
individual artists, movie directors and scientists, tracing the artworks,
movies, and scientific publications they produced. We find that, across all
three domains, hit works within a career show a high degree of temporal
regularity, each career being characterized by bursts of high-impact works
occurring in sequence. We demonstrate that these observations can be explained
by a simple hot-streak model we developed, allowing us to probe quantitatively
the hot streak phenomenon governing individual careers, which we find to be
remarkably universal across diverse domains we analyzed: The hot streaks are
ubiquitous yet unique across different careers. While the vast majority of
individuals have at least one hot streak, hot streaks are most likely to occur
only once. The hot streak emerges randomly within an individual's sequence of
works, is temporally localized, and is unassociated with any detectable change
in productivity. We show that, since works produced during hot streaks garner
significantly more impact, the uncovered hot streaks fundamentally drives the
collective impact of an individual, ignoring which leads us to systematically
over- or under-estimate the future impact of a career. These results not only
deepen our quantitative understanding of patterns governing individual
ingenuity and success, they may also have implications for decisions and
policies involving predicting and nurturing individuals with lasting impact
Curvature-coupling dependence of membrane protein diffusion coefficients
We consider the lateral diffusion of a protein interacting with the curvature
of the membrane. The interaction energy is minimized if the particle is at a
membrane position with a certain curvature that agrees with the spontaneous
curvature of the particle. We employ stochastic simulations that take into
account both the thermal fluctuations of the membrane and the diffusive
behavior of the particle. In this study we neglect the influence of the
particle on the membrane dynamics, thus the membrane dynamics agrees with that
of a freely fluctuating membrane. Overall, we find that this curvature-coupling
substantially enhances the diffusion coefficient. We compare the ratio of the
projected or measured diffusion coefficient and the free intramembrane
diffusion coefficient, which is a parameter of the simulations, with analytical
results that rely on several approximations. We find that the simulations
always lead to a somewhat smaller diffusion coefficient than our analytical
approach. A detailed study of the correlations of the forces acting on the
particle indicates that the diffusing inclusion tries to follow favorable
positions on the membrane, such that forces along the trajectory are on average
smaller than they would be for random particle positions.Comment: 16 pages, 8 figure
Recommended from our members
CAD in mammography: lesion-level versus case-level analysis of the effects of prompts on human decisions
Object: To understand decision processes in CAD-supported breast screening by analysing how prompts affect readers’ judgements of individual mammographic features (lesions). To this end we analysed hitherto unexamined details of reports completed by mammogram readers in an earlier evaluation of a CAD tool.
Material and methods: Assessments of lesions were extracted from 5,839 reports for 59 cancer cases. Statistical analyses of these data focused on what features readers considered when recalling a cancer case and how readers reacted to CAD prompts.
Results: About 13.5% of recall decisions were found to be caused by responses to features other than those indicating actual cancer. Effects of CAD: lesions were more likely to be examined if prompted; the presence of a prompt on a cancer increased the probability of both detection and recall especially for less accurate readers in subtler cases; lack of prompts made cancer features less likely to be detected; false prompts made non-cancer features more likely to be classified as cancer.
Conclusion: The apparent lack of impact reported for CAD in some studies is plausibly due to CAD systematically affecting readers’ identification of individual features, in a beneficial way for certain combinations of readers and features and a damaging way for others. Mammogram readers do not ignore prompts. Methodologically, assessing CAD by numbers of recalled cancer cases may be misleading
- …
