862 research outputs found

    Microscopic expressions for the thermodynamic temperature

    Full text link
    We show that arbitrary phase space vector fields can be used to generate phase functions whose ensemble averages give the thermodynamic temperature. We describe conditions for the validity of these functions in periodic boundary systems and the Molecular Dynamics (MD) ensemble, and test them with a short-ranged potential MD simulation.Comment: 21 pages, 2 figures, Revtex. Submitted to Phys. Rev.

    Orientational Ordering in Spatially Disordered Dipolar Systems

    Full text link
    This letter addresses basic questions concerning ferroelectric order in positionally disordered dipolar materials. Three models distinguished by dipole vectors which have one, two or three components are studied by computer simulation. Randomly frozen and dynamically disordered media are considered. It is shown that ferroelectric order is possible in spatially random systems, but that its existence is very sensitive to the dipole vector dimensionality and the motion of the medium. A physical analysis of our results provides significant insight into the nature of ferroelectric transitions.Comment: 4 pages twocolumn LATEX style. 4 POSTSCRIPT figures available from [email protected]

    RESPOND – A patient-centred programme to prevent secondary falls in older people presenting to the emergency department with a fall: Protocol for a mixed methods programme evaluation.

    Get PDF
    Background Programme evaluations conducted alongside randomised controlled trials (RCTs) have potential to enhance understanding of trial outcomes. This paper describes a multi-level programme evaluation to be conducted alongside an RCT of a falls prevention programme (RESPOND). Objectives 1) To conduct a process evaluation in order to identify the degree of implementation fidelity and associated barriers and facilitators. 2) To evaluate the primary intended impact of the programme: participation in fall prevention strategies, and the factors influencing participation. 3) To identify the factors influencing RESPOND RCT outcomes: falls, fall injuries and ED re-presentations. Methods/ Design Five hundred and twenty eight community-dwelling adults aged 60–90 years presenting to two EDs with a fall will be recruited and randomly assigned to the intervention or standard care group. All RESPOND participants and RESPOND clinicians will be included in the evaluation. A mixed methods design will be used and a programme logic model will frame the evaluation. Data will be sourced from interviews, focus groups, questionnaires, clinician case notes, recruitment records, participant-completed calendars, hospital administrative datasets, and audio-recordings of intervention contacts. Quantitative data will be analysed via descriptive and inferential statistics and qualitative data will be interpreted using thematic analysis. Discussion The RESPOND programme evaluation will provide information about contextual and influencing factors related to the RCT outcomes. The results will assist researchers, clinicians, and policy makers to make decisions about future falls prevention interventions. Insights gained are likely to be transferable to preventive health programmes for a range of chronic conditions

    Ferroelectric and Dipolar Glass Phases of Non-Crystalline Systems

    Full text link
    In a recent letter [Phys. Rev. Lett. {\bf 75}, 2360 (1996)] we briefly discussed the existence and nature of ferroelectric order in positionally disordered dipolar materials. Here we report further results and give a complete description of our work. Simulations of randomly frozen and dynamically disordered dipolar soft spheres are used to study ferroelectric ordering in non-crystalline systems. We also give a physical interpretation of the simulation results in terms of short- and long-range interactions. Cases where the dipole moment has 1, 2, and 3 components (Ising, XY and XYZ models, respectively) are considered. It is found that the Ising model displays ferroelectric phases in frozen amorphous systems, while the XY and XYZ models form dipolar glass phases at low temperatures. In the dynamically disordered model the equations of motion are decoupled such that particle translation is completely independent of the dipolar forces. These systems spontaneously develop long-range ferroelectric order at nonzero temperature despite the absence of any fined-tuned short-range spatial correlations favoring dipolar order. Furthermore, since this is a nonequilibrium model we find that the paraelectric to ferroelectric transition depends on the particle mass. For the XY and XYZ models, the critical temperatures extrapolate to zero as the mass of the particle becomes infinite, whereas, for the Ising model the critical temperature is almost independent of mass and coincides with the ferroelectric transition found for the randomly frozen system at the same density. Thus in the infinite mass limit the results of the frozen amorphous systems are recovered.Comment: 25 pages (LATEX, no macros). 11 POSTSCRIPT figures enclosed. Submitted to Phisical Review E. Contact: [email protected]

    Hot Streaks in Artistic, Cultural, and Scientific Careers

    Full text link
    The hot streak, loosely defined as winning begets more winnings, highlights a specific period during which an individual's performance is substantially higher than her typical performance. While widely debated in sports, gambling, and financial markets over the past several decades, little is known if hot streaks apply to individual careers. Here, building on rich literature on lifecycle of creativity, we collected large-scale career histories of individual artists, movie directors and scientists, tracing the artworks, movies, and scientific publications they produced. We find that, across all three domains, hit works within a career show a high degree of temporal regularity, each career being characterized by bursts of high-impact works occurring in sequence. We demonstrate that these observations can be explained by a simple hot-streak model we developed, allowing us to probe quantitatively the hot streak phenomenon governing individual careers, which we find to be remarkably universal across diverse domains we analyzed: The hot streaks are ubiquitous yet unique across different careers. While the vast majority of individuals have at least one hot streak, hot streaks are most likely to occur only once. The hot streak emerges randomly within an individual's sequence of works, is temporally localized, and is unassociated with any detectable change in productivity. We show that, since works produced during hot streaks garner significantly more impact, the uncovered hot streaks fundamentally drives the collective impact of an individual, ignoring which leads us to systematically over- or under-estimate the future impact of a career. These results not only deepen our quantitative understanding of patterns governing individual ingenuity and success, they may also have implications for decisions and policies involving predicting and nurturing individuals with lasting impact

    Curvature-coupling dependence of membrane protein diffusion coefficients

    Full text link
    We consider the lateral diffusion of a protein interacting with the curvature of the membrane. The interaction energy is minimized if the particle is at a membrane position with a certain curvature that agrees with the spontaneous curvature of the particle. We employ stochastic simulations that take into account both the thermal fluctuations of the membrane and the diffusive behavior of the particle. In this study we neglect the influence of the particle on the membrane dynamics, thus the membrane dynamics agrees with that of a freely fluctuating membrane. Overall, we find that this curvature-coupling substantially enhances the diffusion coefficient. We compare the ratio of the projected or measured diffusion coefficient and the free intramembrane diffusion coefficient, which is a parameter of the simulations, with analytical results that rely on several approximations. We find that the simulations always lead to a somewhat smaller diffusion coefficient than our analytical approach. A detailed study of the correlations of the forces acting on the particle indicates that the diffusing inclusion tries to follow favorable positions on the membrane, such that forces along the trajectory are on average smaller than they would be for random particle positions.Comment: 16 pages, 8 figure
    corecore