386 research outputs found

    pH-responsive nanofibers with controlled drug release properties

    Get PDF
    Cataloged from PDF version of article.Smart polymers and nanofibers are potentially intriguing materials for controlled release of bioactive agents. This work describes a new class of pH responsive nanofibers for drug delivery systems with controlled release properties. Initially, poly(4-vinylbenzoic acid-co-(ar-vinylbenzyl) trimethylammonium chloride) [poly(VBA-co-VBTAC)] was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Then, ciprofloxacin was chosen as the model drug for the release study and encapsulated into pH-responsive polymeric carriers of poly(VBA-co-VBTAC) nanofibers via electrospinning. The morphology of the electrospun nanofibers was examined by scanning electron microscopy (SEM). The structural characteristics of the pH responsive nanofibers were investigated by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The release measurements of ciprofloxacin from pH responsive nanofibers were also performed by high-performance liquid chromatography (HPLC) analysis. To show the pH sensitivity of these nanofibers, the release profile of ciprofloxacin was examined under acidic, neutral and basic conditions. The results indicate that pH responsive nanofibers can serve as effective drug carriers since the release of ciprofloxacin could be controlled by changing the pH of the environment, and therefore these drug loaded pH-responsive nanofibers might have potential applications in the biomedical field. This journal is © The Royal Society of Chemistry

    Salient point region covariance descriptor for target tracking

    Get PDF
    Cataloged from PDF version of article.Features extracted at salient points are used to construct a region covariance descriptor (RCD) for target tracking. In the classical approach, the RCD is computed by using the features at each pixel location, which increases the computational cost in many cases. This approach is redundant because image statistics do not change significantly between neighboring image pixels. Furthermore, this redundancy may decrease tracking accuracy while tracking large targets because statistics of flat regions dominate region covariance matrix. In the proposed approach, salient points are extracted via the Shi and Tomasi’s minimum eigenvalue method over a Hessian matrix, and the RCD features extracted only at these salient points are used in target tracking. Experimental results indicate that the salient point RCD scheme provides comparable and even better tracking results compared to a classical RCD-based approach, scale-invariant feature transform, and speeded-up robust features-based trackers while providing a computationally more efficient structure. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10 .1117/1.OE.52.2.027207

    Versatile and scalable fabrication method for laser-generated focused ultrasound transducers

    Get PDF
    A versatile and scalable fabrication method for laser-generated focused ultrasound transducers is proposed. The method is based on stamping a coated negative mold onto polydimethylsiloxane, and it can be adapted to include different optical absorbers that are directly transferred or synthesized in situ. Transducers with a range of sizes down to 3 mm in diameter are presented, incorporating two carbonaceous (multiwalled carbon nanoparticles and candle soot nanoparticles) and one plasmonic (gold nanoparticles) optically absorbing component. The fabricated transducers operate at central frequencies in the vicinity of 10 MHz with bandwidths in the range of 15–20 MHz. A transducer with a diameter of 5 mm was found to generate a positive peak pressure greater than 35 MPa in the focal zone with a tight focal spot of 150 μm in lateral width. Ultrasound cavitation on the tip of an optical fiber was demonstrated in water for a transducer with a diameter as small as 3 mm

    Ultrasensitive electrospun fluorescent nanofibrous membrane for rapid visual colorimetric detection of H2O2

    Get PDF
    We report herein a flexible fluorescent nanofibrous membrane (FNFM) prepared by decorating the gold nanocluster (AuNC) on electrospun polysulfone nanofibrous membrane for rapid visual colorimetric detection of H2O2. The provision of AuNC coupled to NFM has proven to be advantageous for facile and quick visualization of the obtained results, permitting instant, selective, and on-site detection. We strongly suggest that the fast response time is ascribed to the enhanced probabilities of interaction with AuNC located at the surface of NF. It has been observed that the color change from red to blue is dependent on the concentration, which is exclusively selective for hydrogen peroxide. The detection limit has been found to be 500 nM using confocal laser scanning microscope (CLSM), visually recognizable with good accuracy and stability. A systematic comparison was performed between the sensing performance of FNFM and AuNC solution. The underlying sensing mechanism is demonstrated using UV spectra, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The corresponding disappearance of the characteristic emissions of gold nanoclusters and the emergence of a localized surface plasmon resonance (LSPR) band, stressing this unique characteristic of gold nanoparticles. Hence, it is evident that the conversion of nanoparticles from nanoclusters has taken place in the presence of H2O2. Our work here has paved a new path for the detection of bioanalytes, highlighting the merits of rapid readout, sensitivity, and user-friendliness. © 2015 Springer-Verlag Berlin Heidelberg

    Grain boundary engineering in electrospun ZnO nanostructures as promising photocatalysts

    Get PDF
    Electrospun ZnO nanofibers (ZNF) have received increased attention as photocatalysts owing to their potential for incredible performance. However, uncertainty still exists in determining the correlation between grain boundaries (GBs) and photocatalytic activity. Therefore, effective thought has been put into engineering the GBs to convert ZNF into a promising photocatalyst. Herein, the obtained electrospun ZnO structures are composed of nanograins, which are connected to each other in an ordered manner. In-depth studies have revealed that the growth of nanograins severely altered the morphology of ZNF and GB areas at higher annealing temperatures ranging from 500 °C to 1000 °C. Based on the morphological features and their structural evolution, the obtained structures are named as ZnO nanofibers-1 (ZNF-1, 500 °C), ZnO hollow tubes (ZHT, 600 °C), ZnO nanofibers-2 (ZNF-2, 700 °C), ZnO bamboo structured fibers (ZBF, 800 °C), ZnO segmented fibers (ZSF, 900 °C) and ZnO nanoparticles (ZNP, 1000 °C). A strong correlation between the inherent emission features of ZNF and their peak positions have been detected with the GB. The comparative degradation efficiency of methylene blue (MB) has been studied and the results showed that the ZNF-1 with highly stacked nanograins containing rich grain boundaries demonstrated ∼6 times higher efficiency than other structures. In addition, it has been shown to have a strong effect towards the degradation of Rhodamine B (Rh B) and 4-nitro-phenol (4-NP). A critical parameter for improving the photocatalytic activity is found to be the GB mediated defects, which are proposed to be oxygen/zinc vacancies at nanograin fusion interfaces, while supposedly maintaining its fibrous structure, wherein no relationship has been drawn implying the direct domination of morphology, surface area and defect. © 2016 The Royal Society of Chemistry

    Development of a Fiber Laser with Independently Adjustable Properties for Optical Resolution Photoacoustic Microscopy

    Get PDF
    Photoacoustic imaging is based on the detection of generated acoustic waves through thermal expansion of tissue illuminated by short laser pulses. Fiber lasers as an excitation source for photoacoustic imaging have recently been preferred for their high repetition frequencies. Here, we report a unique fiber laser developed specifically for multiwavelength photoacoustic microscopy system. The laser is custom-made for maximum flexibility in adjustment of its parameters; pulse duration (5–10 ns), pulse energy (up to 10 μJ) and repetition frequency (up to 1 MHz) independently from each other and covers a broad spectral region from 450 to 1100 nm and also can emit wavelengths of 532, 355, and 266 nm. The laser system consists of a master oscillator power amplifier, seeding two stages; supercontinuum and harmonic generation units. The laser is outstanding since the oscillator, amplifier and supercontinuum generation parts are all-fiber integrated with custom-developed electronics and software. To demonstrate the feasibility of the system, the images of several elements of standardized resolution test chart are acquired at multiple wavelengths. The lateral resolution of optical resolution photoacoustic microscopy system is determined as 2.68 μm. The developed system may pave the way for spectroscopic photoacoustic microscopy applications via widely tunable fiber laser technologies

    Ultrasensitive electrospun fluorescent nanofibrous membrane for rapid visual colorimetric detection of H2O2

    Get PDF
    We report herein a flexible fluorescent nanofibrous membrane (FNFM) prepared by decorating the gold nanocluster (AuNC) on electrospun polysulfone nanofibrous membrane for rapid visual colorimetric detection of H2O2. The provision of AuNC coupled to NFM has proven to be advantageous for facile and quick visualization of the obtained results, permitting instant, selective, and on-site detection. We strongly suggest that the fast response time is ascribed to the enhanced probabilities of interaction with AuNC located at the surface of NF. It has been observed that the color change from red to blue is dependent on the concentration, which is exclusively selective for hydrogen peroxide. The detection limit has been found to be 500 nM using confocal laser scanning microscope (CLSM), visually recognizable with good accuracy and stability. A systematic comparison was performed between the sensing performance of FNFM and AuNC solution. The underlying sensing mechanism is demonstrated using UV spectra, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The corresponding disappearance of the characteristic emissions of gold nanoclusters and the emergence of a localized surface plasmon resonance (LSPR) band, stressing this unique characteristic of gold nanoparticles. Hence, it is evident that the conversion of nanoparticles from nanoclusters has taken place in the presence of H2O2. Our work here has paved a new path for the detection of bioanalytes, highlighting the merits of rapid readout, sensitivity, and user-friendliness. © 2015 Springer-Verlag Berlin Heidelberg

    Finite temperature quantum simulation of stabilizer Hamiltonians

    Full text link
    We present a scheme for robust finite temperature quantum simulation of stabilizer Hamiltonians. The scheme is designed for realization in a physical system consisting of a finite set of neutral atoms trapped in an addressable optical lattice that are controllable via 1- and 2-body operations together with dissipative 1-body operations such as optical pumping. We show that these minimal physical constraints suffice for design of a quantum simulation scheme for any stabilizer Hamiltonian at either finite or zero temperature. We demonstrate the approach with application to the abelian and non-abelian toric codes.Comment: 13 pages, 2 figure

    Noise Reduction in Photoacoustic Imaging using Wavelet Transform

    Get PDF
    Fotoakustik mikroskop (Photoacoustic Microscopy, PAM) fotoakustik etki temeline dayanan ve son yıllarda geliştirilmeye başlayan hibrid bir görüntüleme tekniğidir. Optik kontrastı akustik olarak algılayan sistem yapısı sayesinde optik difüzyon sınırının ötesinde derin bir görüntülemeyi yüksek çözünürlükle sunabilmektedir. PAM sistemi ile görüntülemede kaydedilen sinyaller, sistem bileşenleri ve çevresel etkilerle gürültüye maruz kalmaktadır. Yapılan çalışmanın ilk aşamasında akustik dalga denkleminin çözümüyle oluşturulan akustik sinyal üzerine belirli oranlarda sentetik gürültüler eklenmiştir. Gürültülü sinyallere farklı ana dalgacıklar kullanılarak ayrık dalgacık dönüşümü ile filtreleme işlemi uygulanmış ve filtreleme performansının değerlendirilmesi için sinyaller üzerinde gürültü metrikleri hesaplanmıştır. İkinci aşamada, ilk aşamada elde edilen veriler doğrultusunda PA sinyallerin filtrelenmesi için uygun ana dalgacıklar seçilmiş filtrelenen sinyaller ile görüntüler oluşturularak, görüntüler üzerinde gürültü metrikleri incelenmiştir // Photoacoustic microscopy (PAM) is a hybrid imaging technique based on the photoacoustic effect and which has begun to develop in recent years. Thanks to the system structure that senses the optical contrast acoustically, it is able to present deep imaging with high resolution beyond the optical diffusion limit. Signals recorded in imaging with the PAM system are exposed to noise by system components and environmental effectcs. In the first stage of the work, a synthetic noise is added at a certain rate on the acoustic signal generated by the solution of the acoustic wave equation. Noisy signals are filtered using discrete wavelet transforms using different main wavelets and noise metrics are calculated on the signals to evaluate the filtering performance. In the second step, the noise metrics are examined on the images by generating the images with the filtered wavelet signals, which are suitable for filtering the PA signals in the direction of the data obtained in the first stage
    corecore