42 research outputs found

    Yoga of Immortals Intervention Reduces Symptoms of Depression, Insomnia and Anxiety

    Get PDF
    Background: Depression, anxiety, and disordered sleep are some common symptoms associated with sub-optimal mental health. During the COVID-19 pandemic, mental health issues have grown increasingly more prevalent in the population. Due to social distancing and other limitations during the pandemic, there is a need for home-based, flexible interventions that can improve mental health. The Yoga of Immortals (YOI) mobile application provides a structured intervention that can be used on any mobile device and applied from the user's home.Methods: A total of 1,505 participants were enrolled in the study and used the YOI app for an 8-week period. Participants were asked to fill out three questionnaires: The Patient Health Questionnaire, 8 items (PHQ-8), the Generalized Anxiety Disorder questionnaire (GAD-7) and the Insomnia Severity Index (ISI). These three items were completed by 1,297 participants a total of four times: before starting YOI, two more times during use, and a fourth time after the 8-week usage period. Changes in PHQ8, GAD7 and ISI in participants were compared to a control group, who did not use the YOI app but completed all questionnaires (590 controls finished all questionnaires).Results: Participants reported significant decreases in depression and anxiety-related symptoms. Compared to baseline, PHQ-8 scores decreased 50% on average after the 8-week period. GAD-7 scores also decreased by 40–50% on average, and ISI scores decreased by 50%. These changes were significantly greater (p < 0.05) than that observed in the control group. Participants who reported a previous diagnosis of depression and generalized anxiety reported significantly larger decreases in PHQ-8 and GAD-7 as compared to participants with no prior diagnosis (p < 0.05).Conclusions: Regular use of the YOI intervention over an 8-week period led to significant decreases in symptoms of both depression and anxiety, as well as alleviation of insomnia

    Reduced expression of cerebral metabotropic glutamate receptor subtype 5 in men with fragile X syndrome

    Get PDF
    Glutamatergic receptor expression is mostly unknown in adults with fragile X syndrome (FXS). Favorable behavioral effects of negative allosteric modulators (NAMs) of the metabotropic glutamate receptor subtype 5 (mGlu

    Role of Subunit Exchange and Electrostatic Interactions on the Chaperone Activity of Mycobacterium leprae HSP18.

    No full text
    Mycobacterium leprae HSP18, a major immunodominant antigen of M. leprae pathogen, is a small heat shock protein. Previously, we reported that HSP18 is a molecular chaperone that prevents aggregation of different chemically and thermally stressed client proteins and assists refolding of denatured enzyme at normal temperature. We also demonstrated that it can efficiently prevent the thermal killing of E. coli at higher temperature. However, molecular mechanism behind the chaperone function of HSP18 is still unclear. Therefore, we studied the structure and chaperone function of HSP18 at normal temperature (25°C) as well as at higher temperatures (31-43°C). Our study revealed that the chaperone function of HSP18 is enhanced significantly with increasing temperature. Far- and near-UV CD experiments suggested that its secondary and tertiary structure remain intact in this temperature range (25-43°C). Besides, temperature has no effect on the static oligomeric size of this protein. Subunit exchange study demonstrated that subunits of HSP18 exchange at 25°C with a rate constant of 0.018 min(-1). Both rate of subunit exchange and chaperone activity of HSP18 is found to increase with rise in temperature. However, the surface hydrophobicity of HSP18 decreases markedly upon heating and has no correlation with its chaperone function in this temperature range. Furthermore, we observed that HSP18 exhibits diminished chaperone function in the presence of NaCl at 25°C. At elevated temperatures, weakening of interactions between HSP18 and stressed client proteins in the presence of NaCl results in greater reduction of its chaperone function. The oligomeric size, rate of subunit exchange and structural stability of HSP18 were also found to decrease when electrostatic interactions were weakened. These results clearly indicated that subunit exchange and electrostatic interactions play a major role in the chaperone function of HSP18

    Effect of electrostatic interaction on the structural stability of HSP18.

    No full text
    <p>The thermal stability of HSP18 in the absence or presence of 0.5 M NaCl was determined using far-UV CD spectroscopy (panel A) and differential scanning calorimetry (panel C). The experimental data points (mentioned by symbols in panel A and sold lines in panel C) were fitted according to two-state model and the solid lines (in panel A) and dotted lines (in panel C) represent the best fit. <b>(B)</b> The data represented in panel A was fitted to <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0129734#pone.0129734.e005" target="_blank">Eq 5</a> in order to obtain the values of van’t Hoff enthalpy (∆H<sub>vH</sub>) HSP18 in the absence or presence of 0.5 M NaCl.</p

    Determination of subunit exchange rate constant of HSP18 subunits at different temperatures.

    No full text
    <p><b>(A)</b> Time-course alterations in the emission spectrum of Alexa fluor-350 and 488 labeled <i>M</i>. <i>leprae</i> HSP18 due to subunit exchange at 37°C. The emission spectra were recorded at different time points after mixing equal amount of Alexa fluor-350 labeled and Alexa fluor-488 labeled HSP18 (1 mg/ml each) at 37°C. The fluorescence spectra were recorded from 400 to 600 nm at 37°C using the excitation wavelength of 346 nm. The slit width of both excitation and emission monochromators was 5 nm each. The scan rate used for this assay was 240 nm/min. <b>(B)</b> Time-dependent decrease in fluorescence intensity at 440 nm for data shown in panel A. <b>(C)</b> Time-dependent increase in fluorescence intensity at 513 nm for data shown in panel A. <b>(D)</b> Temperature-dependent subunit exchange rate of <i>M</i>. <i>leprae</i> HSP18. Subunit exchange between Alexa fluor-350 labeled and Alexa fluor-488 labeled HSP18 was monitored at 25, 31, 37 and 43°C. Symbols in panel B, C and D represent the experimental data points and the solid lines in these pannels represent the best fit of the data according to <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0129734#pone.0129734.e003" target="_blank">Eq 3</a>.</p
    corecore