2,250 research outputs found

    Method For Making 2-Electron Response Reduced Density Matrices Approximately N-representable

    Get PDF
    In methods like geminal-based approaches or coupled cluster that are solved using the projected Schr\"odinger equation, direct computation of the 2-electron reduced density matrix (2-RDM) is impractical and one falls back to a 2-RDM based on response theory. However, the 2-RDMs from response theory are not NN-representable. That is, the response 2-RDM does not correspond to an actual physical NN-electron wave function. We present a new algorithm for making these non-NN-representable 2-RDMs approximately NN-representable, i.e. it has the right symmetry and normalization and it fulfills the PP-, QQ- and GG-conditions. Next to an algorithm which can be applied to any 2-RDM, we have also developed a 2-RDM optimization procedure specifically for seniority-zero 2-RDMs. We aim to find the 2-RDM with the right properties that is the closest (in the sense of the Frobenius norm) to the non-N-representable 2-RDM by minimizing the square norm of the difference between the initial 2-RDM and the targeted 2-RDM under the constraint that the trace is normalized and the 2-RDM, QQ- and GG-matrices are positive semidefinite, i.e. their eigenvalues are non-negative. Our method is suitable for fixing non-N-respresentable 2-RDMs which are close to being N-representable. Through the N-representability optimization algorithm we add a small correction to the initial 2-RDM such that it fulfills the most important N-representability conditions.Comment: 13 pages, 8 figure

    The mental health safety improvement programme: a national quality improvement collaborative to reduce restrictive practice in England

    Get PDF
    In 2018, 38 mental health inpatient wards belonging to NHS trusts across England took part in the national reducing restrictive practice collaborative project, which aimed to reduce the use of rapid tranquillisation, restraint and seclusion of patients by 33%. Teams were supported to use quality improvement tools by skilled coaches as part of a national collaborative learning system. At the end of the programme, the overall use of restrictive practice had reduced by 15%. Of the teams that achieved improvements, the average reduction in restrictive practice was 61%. Across the collaborative there were improvements in the mean monthly use of restraints and rapid tranquillisation, and in the total use of all three measures of restrictive practice combined. Support from quality improvement coaches allowed ideas to be tested across the collaborative, enabling the creation of a theory of change for reducing restrictive practice based on areas with a high degree of belief to inform future improvement work in this area

    Two-Dimensional Partial-Covariance Mass Spectrometry of Large Molecules Based on Fragment Correlations

    Get PDF
    Covariance mapping [L. J. Frasinski, K. Codling, and P. A. Hatherly, Science 246, 1029 (1989)] is a well-established technique used for the study of mechanisms of laser-induced molecular ionization and decomposition. It measures statistical correlations between fluctuating signals of pairs of detected species (ions, fragments, electrons). A positive correlation identifies pairs of products originating from the same dissociation or ionization event. A major challenge for covariance-mapping spectroscopy is accessing decompositions of large polyatomic molecules, where true physical correlations are overwhelmed by spurious signals of no physical significance induced by fluctuations in experimental parameters. As a result, successful applications of covariance mapping have so far been restricted to low-mass systems, e.g., organic molecules of around 50 daltons (Da). Partial-covariance mapping was suggested to tackle the problem of spurious correlations by taking into account the independently measured fluctuations in the experimental conditions. However, its potential has never been realized for the decomposition of large molecules, because in these complex situations, determining and continuously monitoring multiple experimental parameters affecting all the measured signals simultaneously becomes unfeasible. We introduce, through deriving theoretically and confirming experimentally, a conceptually new type of partial-covariance mapping—self-correcting partial-covariance spectroscopy—based on a parameter extracted from the measured spectrum itself. We use the readily available total ion count as the self-correcting partial-covariance parameter, thus eliminating the challenge of determining experimental parameter fluctuations in covariance measurements of large complex systems. The introduced self-correcting partial covariance enables us to successfully resolve correlations of molecules as large as 10 3 – 10 4     Da , 2 orders of magnitude above the state of the art. This opens new opportunities for mechanistic studies of large molecule decompositions through revealing their fragment-fragment correlations. Moreover, we demonstrate that self-correcting partial covariance is applicable to solving the inverse problem: reconstruction of a molecular structure from its fragment spectrum, within two-dimensional partial-covariance mass spectrometry

    Modeling Supply Networks and Business Cycles as Unstable Transport Phenomena

    Full text link
    Physical concepts developed to describe instabilities in traffic flows can be generalized in a way that allows one to understand the well-known instability of supply chains (the so-called ``bullwhip effect''). That is, small variations in the consumption rate can cause large variations in the production rate of companies generating the requested product. Interestingly, the resulting oscillations have characteristic frequencies which are considerably lower than the variations in the consumption rate. This suggests that instabilities of supply chains may be the reason for the existence of business cycles. At the same time, we establish some link to queuing theory and between micro- and macroeconomics.Comment: For related work see http://www.helbing.or

    Prediction of Dengue Incidence Using Search Query Surveillance

    Get PDF
    Improvements in surveillance, prediction of outbreaks and the monitoring of the epidemiology of dengue virus in countries with underdeveloped surveillance systems are of great importance to ministries of health and other public health decision makers who are often constrained by budget or man-power. Google Flu Trends has proven successful in providing an early warning system for outbreaks of influenza weeks before case data are reported. We believe that there is greater potential for this technique for dengue, as the incidence of this pathogen can vary by a factor of ten in some settings, making prediction all the more important in public health planning. In this paper, we demonstrate the utility of Google search terms in predicting dengue incidence in Singapore and Bangkok, Thailand using several regression techniques. Incidence data were provided by the Singapore Ministry of Health and the Thailand Bureau of Epidemiology. We find our models predict incident cases well (correlation greater than 0.8) and periods of high incidence equally well (AUC greater than 0.95). All data and analysis code used in our study are available free online and can be adapted to other settings

    Collagen IV levels are elevated in the serum of patients with primary breast cancer compared to healthy volunteers

    Get PDF
    Collagen IV is a major component of the vascular basement membrane and may be a marker of angiogenesis. Serum levels of this protein are elevated in some human cancers. Our objectives were to compare collagen IV levels in the serum of breast cancer patients and healthy women and to examine changes during preoperative chemotherapy. Sera from 51 patients with stage II–III breast cancer and 55 healthy controls were analysed. Collagen IV level was measured by a commercially available sandwich enzyme link immunoassay. Baseline serum levels were compared between cancer patients and healthy women and paired pre- and post-chemotherapy measurements were also performed in 39 patients who received preoperative chemotherapy and were correlated with response to therapy. The median serum collagen IV concentration was significantly higher in cancer patients (166 μg l−1) than in healthy women (115 μg l−1), P<0.001. Chemotherapy induced a significant further increase in serum collagen IV (167 μg l−1 prechemo vs 206 μg l−1 postchemo, P=0.001). There were no correlations between baseline collagen IV levels and response to therapy, age, clinical stage or HER2 status. In conclusion, patients with breast cancer have elevated levels of collagen IV compared to healthy women and collagen IV levels increase further during chemotherapy
    • …
    corecore