40 research outputs found

    APPLIED GENETICS AND MOLECULAR BIOTECHNOLOGY Improvement of natural isolates of Saccharomyces cerevisiae strains for synthesis of a chiral building block using classic genetics

    Get PDF
    Abstract The asymmetric bio-reduction of 4-chloro-acetoacetic-acid-ethyl-ester to the pharmaceutical building block (S)-4-chloro-3-hydroxybutanoate-ethyl-ester requires the utilization of an enantioselective robust biocatalyst. Some of the natural Saccharomyces cerevisiae strains, isolated from Mount Carmel National Park in Israel, were characterized as resistant to environmental stress. Nevertheless, these strains showed relatively low enantiomeric-excess (ee), while a laboratory strain, Y103, exhibited a selectivity of 98% ee. The enantioselective lab strain was crossed with the multi-stress resistant environmental isolate (93% ee) followed by backcross with Y103, to subsequently obtain a haploid offspring of backcross-1, exhibiting both high multistress resistance and high enantioselectivity (98% ee). Introducing osmotic (1 M NaCl), oxidative (0.6 mM H 2 O 2 ) and thermal stress (44°C) to growing cultures of the enantioselective parent, resulted in a decrease of 24-32% in specific activity, while the enantioselectivity of the stress-resistant parent decreased by 4-12% ee. Unlike its original parental strains, the new strain maintained constant specific activity and enantioselectivity when introduced to the various stress factors. This work shows that the classic introgression method, can serve as a viable approach for creating a robust enantioselective biocatalyst, designed for industrial production of chiral compounds

    Atomic picture of ligand migration in toluene 4-monooxygenase

    Get PDF
    Computational modeling combined with mutational and activity assays was used to underline the substrate migration pathways in toluene 4-monooxygenase, a member of the important family of bacterial multicomponent monooxygenases (BMMs). In all structurally defined BMM hydroxylases, several hydrophobic cavities in the α-subunit map a preserved path from the protein surface to the diiron active site. Our results confirm the presence of two pathways by which different aromatic molecules can enter/escape the active site. While the substrate is observed to enter from both channels, the more hydrophilic product is withdrawn mainly from the shorter channel ending at residues D285 and E214. The long channel ends in the vicinity of S395, whose variants have been seen to affect activity and specificity. These mutational effects are clearly reproduced and rationalized by the in silico studies. Furthermore, the combined computational and experimental results highlight the importance of residue F269, which is located at the intersection of the two channels.This work has been funded by the EU projects INDOX (KBBE20137613549) and ERC 2009Adg25027PELE (to V.G) and the Spanish Ministry of Education and Science project CTQ201348287 (to V.G).Peer ReviewedPostprint (author's final draft

    Engineering Non-Heme Mono- and Dioxygenases for Biocatalysis

    Get PDF
    Oxygenases are ubiquitous enzymes that catalyze the introduction of one or two oxygen atoms to unreactive chemical compounds. They require reduction equivalents from NADH or NADPH and comprise metal ions, metal ion complexes, or coenzymes in their active site. Thus, for industrial purposes, oxygenases are most commonly employed using whole cell catalysis, to alleviate the need for co-factor regeneration. Biotechnological applications include bioremediation, chiral synthesis, biosensors, fine chemicals, biofuels, pharmaceuticals, food ingredients and polymers. Controlling activity and selectivity of oxygenases is therefore of great importance and of growing interest to the scientific community. This review focuses on protein engineering of non-heme monooxygenases and dioxygenases for generating improved or novel functionalities. Rational mutagenesis based on x-ray structures and sequence alignment, as well as random methods such as directed evolution, have been utilized. It is concluded that knowledge-based protein engineering accompanied with targeted libraries, is most efficient for the design and tuning of biocatalysts towards novel substrates and enhanced catalytic activity while minimizing the screening efforts

    Improving Biocatalyst Performance by Integrating Statistical Methods into Protein Engineering ▿

    No full text
    Directed evolution and rational design were used to generate active variants of toluene-4-monooxygenase (T4MO) on 2-phenylethanol (PEA), with the aim of producing hydroxytyrosol, a potent antioxidant. Due to the complexity of the enzymatic system—four proteins encoded by six genes—mutagenesis is labor-intensive and time-consuming. Therefore, the statistical model of Nov and Wein (J. Comput. Biol. 12:247-282) was used to reduce the number of variants produced and evaluated in a lab. From an initial data set of 24 variants, with mutations at nine positions, seven double or triple mutants were identified through statistical analysis. The average activity of these mutants was 4.6-fold higher than the average activity of the initial data set. In an attempt to further improve the enzyme activity to obtain PEA hydroxylation, a second round of statistical analysis was performed. Nine variants were considered, with 3, 4, and 5 point mutations. The average activity of the variants obtained in the second statistical round was 1.6-fold higher than in the first round and 7.3-fold higher than that of the initial data set. The best variant discovered, TmoA I100A E214G D285Q, exhibited an initial oxidation rate of 4.4 ± 0.3 nmol/min/mg protein, which is 190-fold higher than the rate obtained by the wild type. This rate was also 2.6-fold higher than the activity of the wild type on the natural substrate toluene. By considering only 16 preselected mutants (out of ∼13,000 possible combinations), a highly active variant was discovered with minimum time and effort

    Shifting the balance: soluble ADAM10 as a potential treatment for Alzheimer's disease

    Get PDF
    IntroductionAccumulation of amyloid β in the brain is regarded as a key initiator of Alzheimer's disease pathology. Processing of the amyloid precursor protein (APP) in the amyloidogenic pathway yields neurotoxic amyloid β species. In the non-amyloidogenic pathway, APP is processed by membrane-bound ADAM10, the main α-secretase in the nervous system. Here we present a new enzymatic approach for the potential treatment of Alzheimer's disease using a soluble form of ADAM10.MethodsThe ability of the soluble ADAM10 to shed overexpressed and endogenous APP was determined with an ADAM10 knockout cell line and a human neuroblastoma cell line, respectively. We further examined its effect on amyloid β aggregation by thioflavin T fluorescence, HPLC, and confocal microscopy. Using N-terminal and C-terminal enrichment proteomic approaches, we identified soluble ADAM10 substrates. Finally, a truncated soluble ADAM10, based on the catalytic domain, was expressed in Escherichia coli for the first time, and its activity was evaluated.ResultsThe soluble enzyme hydrolyzes APP and releases the neuroprotective soluble APPα when exogenously added to cell cultures. The soluble ADAM10 inhibits the formation and aggregation of characteristic amyloid β extracellular neuronal aggregates. The proteomic investigation identified new and verified known substrates, such as VGF and N-cadherin, respectively. The truncated variant also exhibited α-secretase capacity as shown with a specific ADAM10 fluorescent substrate in addition to shedding overexpressed and endogenous APP.DiscussionOur in vitro study demonstrates that exogenous treatment with a soluble variant of ADAM10 would shift the balance toward the non-amyloidogenic pathway, thus utilizing its natural neuroprotective effect and inhibiting the main neurotoxic amyloid β species. The potential of such a treatment for Alzheimer's disease needs to be further evaluated in vivo

    Toluene 3-Monooxygenase of Ralstonia pickettii PKO1 Is a para-Hydroxylating Enzyme

    No full text
    Oxygenases are promising biocatalysts for performing selective hydroxylations not accessible by chemical methods. Whereas toluene 4-monooxygenase (T4MO) of Pseudomonas mendocina KR1 hydroxylates monosubstituted benzenes at the para position and toluene ortho-monooxygenase (TOM) of Burkholderia cepacia G4 hydroxylates at the ortho position, toluene 3-monooxygenase (T3MO) of Ralstonia pickettii PKO1 was reported previously to hydroxylate toluene at the meta position, producing primarily m-cresol (R. H. Olsen, J. J. Kukor, and B. Kaphammer, J. Bacteriol. 176:3749-3756, 1994). Using gas chromatography, we have discovered that T3MO hydroxylates monosubstituted benzenes predominantly at the para position. TG1/pBS(Kan)T3MO cells expressing T3MO oxidized toluene at a maximal rate of 11.5 ± 0.33 nmol/min/mg of protein with an apparent K(m) value of 250 μM and produced 90% p-cresol and 10% m-cresol. This product mixture was successively transformed to 4-methylcatechol. T4MO, in comparison, produces 97% p-cresol and 3% m-cresol. Pseudomonas aeruginosa PAO1 harboring pRO1966 (the original T3MO-bearing plasmid) also exhibited the same product distribution as that of TG1/pBS(Kan)T3MO. TG1/pBS(Kan)T3MO produced 66% p-nitrophenol and 34% m-nitrophenol from nitrobenzene and 100% p-methoxyphenol from methoxybenzene, as well as 62% 1-naphthol and 38% 2-naphthol from naphthalene; similar results were found with TG1/pBS(Kan)T4MO. Sequencing of the tbu locus from pBS(Kan)T3MO and pRO1966 revealed complete identity between the two, thus eliminating any possible cloning errors. (1)H nuclear magnetic resonance analysis confirmed the structural identity of p-cresol in samples containing the product of hydroxylation of toluene by pBS(Kan)T3MO

    Protein Engineering of Toluene Monooxygenases for Synthesis of Chiral Sulfoxides▿

    Get PDF
    Enantiopure sulfoxides are valuable asymmetric starting materials and are important chiral auxiliaries in organic synthesis. Toluene monooxygenases (TMOs) have been shown previously to catalyze regioselective hydroxylation of substituted benzenes and phenols. Here we show that TMOs are also capable of performing enantioselective oxidation reactions of aromatic sulfides. Mutagenesis of position V106 in the α-hydroxylase subunit of toluene ortho-monooxygenase (TOM) of Burkholderia cepacia G4 and the analogous position I100 in toluene 4-monooxygenase (T4MO) of Pseudomonas mendocina KR1 improved both rate and enantioselectivity. Variant TomA3 V106M of TOM oxidized methyl phenyl sulfide to the corresponding sulfoxide at a rate of 3.0 nmol/min/mg protein compared with 1.6 for the wild-type enzyme, and the enantiomeric excess (pro-S) increased from 51% for the wild type to 88% for this mutant. Similarly, T4MO variant TmoA I100G increased the wild-type oxidation rate by 1.7-fold, and the enantiomeric excess rose from 86% to 98% (pro-S). Both wild-type enzymes showed lower activity with methyl para-tolyl sulfide as a substrate, but the improvement in the activity and enantioselectivity of the mutants was more dramatic. For example, T4MO variant TmoA I100G oxidized methyl para-tolyl sulfide 11 times faster than the wild type did and changed the selectivity from 41% pro-R to 77% pro-S. A correlation between regioselectivity and enantioselectivity was shown for TMOs studied in this work. Using in silico homology modeling, it is shown that residue I100 in T4MO aids in steering the substrate into the active site at the end of the long entrance channel. It is further hypothesized that the main function of V106 in TOM is the proper positioning or docking of the substrate with respect to the diiron atoms. The results from this work suggest that when the substrate is not aligned correctly in the active site, the oxidation rate is decreased and enantioselectivity is impaired, resulting in products with both chiral configurations
    corecore