5 research outputs found

    Resonant Microcantilevers for the Determination of the Loss Modulus of Thin Polymer Films

    Get PDF
    The increasing interest in polymer materials creates the need for accurate tools to characterize their mechanical properties. Due to energy dissipation in polymers during deformation, these materials exhibit viscoelastic behavior. Accurate determination of these viscoelastic properties and, more specifically, viscous losses, remains challenging and mainly unknown for thin polymer films. In this paper, a straightforward method to determine the loss modulus of organic materials using resonating microcantilevers has been developed. The extracted results for polyisobutylene show the variation of viscous losses over a large range of frequencies (7-350 kHz)

    Development of a Versatile Strategy for Inkjet-Printed Molecularly Imprinted Polymer Microarrays

    Get PDF
    Biochips are composed of arrays of micropatterns enabling the optical detection of target analytes. Inkjet printing, complementary to commercially available micro- and nanospotters, is a contactless and versatile micropatterning method. Surprisingly, the inkjet printing of molecularly imprinted polymers (MIPs), also known as biomimetic synthetic antibodies, has not been demonstrated as yet. In this work, core–shell structures are proposed through the combination of inkjet printing of the core (top-down approach) and controlled radical polymerization (CRP) to decorate the core with a thin film of MIP (bottom-up approach). The resulting biochips show quantitative, specific, and selective detection of antibiotic drug enrofloxacin by means of fluorescence analysis.Sample In - Answer Out Optochemical Sensing System
    corecore