70 research outputs found

    Utilization of Molecular Inversion Probes in Malaria Sequencing

    Get PDF
    While massively parallel sequencing of whole genomes shed light on many previously puzzling genetic questions, the high costs associated with this approach makes its use impractical when large cohorts need to be sequenced at high coverage. Available capture technologies reduces the sequencing costs by enriching template material for the regions of interest. However, these technologies are also prohibitively costly at high sample numbers. Capture methods utilizing molecular inversion probes (MIPs) offer a flexible alternative to enrich template material that multiplex well for thousands of samples and require minimal resources. Here, for our work in malaria, we extend the utility of MIPs, improving the capture length and efficiency. We have also dramatically decreased the capture time from 24-48 h to 1 h. Combined, these improvements allow the potential for rapid and reliable application of MIP captures in research and, importantly, clinical settings

    Drug-Resistance and Population Structure of Plasmodium falciparum Across the Democratic Republic of Congo Using High-Throughput Molecular Inversion Probes

    Get PDF
    A better understanding of the drivers of the spread of malaria parasites and drug resistance across space and time is needed. These drivers can be elucidated using genetic tools. Here, a novel molecular inversion probe (MIP) panel targeting all major drug-resistance mutations and a set of microsatellites was used to genotype Plasmodium falciparum infections of 552 children from the 2013-2014 Demographic and Health Survey conducted in the Democratic Republic of the Congo (DRC). Microsatellite-based analysis of population structure suggests that parasites within the DRC form a homogeneous population. In contrast, sulfadoxine-resistance markers in dihydropteroate synthase show marked spatial structure with ongoing spread of double and triple mutants compared with 2007. These findings suggest that parasites in the DRC remain panmictic despite rapidly spreading antimalarial-resistance mutations. Moreover, highly multiplexed targeted sequencing using MIPs emerges as a cost-effective method for elucidating pathogen genetics in complex infections in large cohorts

    Epstein Barr virus genomes reveal population structure and type 1 association with endemic Burkitt lymphoma [preprint]

    Get PDF
    Endemic Burkitt lymphoma (eBL), the most prevalent pediatric cancer in sub-Saharan Africa, is associated with malaria and Epstein Barr virus (EBV). In order to better understand the role of EBV in eBL, we improved viral DNA enrichment methods and generated a total of 98 new EBV genomes from both eBL cases (N=58) and healthy controls (N=40) residing in the same geographic region in Kenya. Comparing cases and controls, we found that EBV type 1 was significantly associated with eBL with 74.5% of patients (41/55) versus 47.5% of healthy children (19/40) carrying type 1 (OR=3.24, 95% CI=1.36 - 7.71, P=0.007). Controlling for EBV type, we also performed a genome-wide association study identifying 6 nonsynonymous variants in the genes EBNA1, EBNA2, BcLF1, and BARF1 that were enriched in eBL patients. Additionally, we observed that viruses isolated from plasma of eBL patients were identical to their tumor counterpart consistent with circulating viral DNA originating from the tumor. We also detected three intertypic recombinants carrying type 1 EBNA2 and type 2 EBNA3 regions as well as one novel genome with a 20 kb deletion resulting in the loss of multiple lytic and virion genes. Comparing EBV types, genes show differential variation rates as type 1 appears to be more divergent. Besides, type 2 demonstrates novel substructures. Overall, our findings address the complexities of EBV population structure and provide new insight into viral variation, which has the potential to influence eBL oncogenesis

    Drug susceptibility of Plasmodium falciparum in eastern Uganda: a longitudinal phenotypic and genotypic study

    Get PDF
    Background: Treatment and control of malaria depends on artemisinin-based combination therapies (ACTs) and is challenged by drug resistance, but thus far resistance to artemisinins and partner drugs has primarily occurred in southeast Asia. The aim of this study was to characterise antimalarial drug susceptibility of Plasmodium falciparum isolates from Tororo and Busia districts in Uganda. Methods: In this prospective longitudinal study, P falciparum isolates were collected from patients aged 6 months or older presenting at the Tororo District Hospital (Tororo district, a site with relatively low malaria incidence) or Masafu General Hospital (Busia district, a high-incidence site) in eastern Uganda with clinical symptoms of malaria, a positive Giemsa-stained blood film for P falciparum, and no signs of severe disease. Ex-vivo susceptibilities to ten antimalarial drugs were measured using a 72-h microplate growth inhibition assay with SYBR Green detection. Relevant P falciparum genetic polymorphisms were characterised by molecular methods. We compared results with those from earlier studies in this region and searched for associations between drug susceptibility and parasite genotypes. Findings: From June 10, 2016, to July 29, 2019, 361 P falciparum isolates were collected in the Busia district and 79 in the Tororo district from 440 participants. Of 440 total isolates, 392 (89%) successfully grew in culture and showed excellent drug susceptibility for chloroquine (median half-maximal inhibitory concentration [IC50] 20·0 nM [IQR 12·0-26·0]), monodesethylamodiaquine (7·1 nM [4·3-8·9]), pyronaridine (1·1 nM [0·7-2·3]), piperaquine (5·6 nM [3·3-8·6]), ferroquine (1·8 nM [1·5-3·3]), AQ-13 (24·0 nM [17·0-32·0]), lumefantrine (5·1 nM [3·2-7·7]), mefloquine (9·5 nM [6·6-13·0]), dihydroartemisinin (1·5 nM [1·0-2·0]), and atovaquone (0·3 nM [0·2-0·4]). Compared with results from our study in 2010-13, significant improvements in susceptibility were seen for chloroquine (median IC50 288·0 nM [IQR 122·0-607·0]; p\u3c0·0001), monodesethylamodiaquine (76·0 nM [44·0-137]; p\u3c0·0001), and piperaquine (21·0 nM [7·6-43·0]; p\u3c0·0001), a small but significant decrease in susceptibility was seen for lumefantrine (3·0 nM [1·1-7·6]; p\u3c0·0001), and no change in susceptibility was seen with dihydroartemisinin (1·3 nM [0·8-2·5]; p=0·64). Chloroquine resistance (IC50\u3e100 nM) was more common in isolates from the Tororo district (11 [15%] of 71), compared with those from the Busia district (12 [4%] of 320; p=0·0017). We showed significant increases between 2010-12 and 2016-19 in the prevalences of wild-type P falciparum multidrug resistance protein 1 (PfMDR1) Asn86Tyr from 60% (391 of 653) to 99% (418 of 422; p\u3c0·0001), PfMDR1 Asp1246Tyr from 60% (390 of 650) to 90% (371 of 419; p\u3c0·0001), and P falciparum chloroquine resistance transporter (PfCRT) Lys76Thr from 7% (44 of 675) to 87% (364 of 417; p\u3c0·0001). Interpretation: Our results show marked changes in P falciparum drug susceptibility phenotypes and genotypes in Uganda during the past decade. These results suggest that additional changes will be seen over time and continued surveillance of susceptibility to key ACT components is warranted. Funding: National Institutes of Health and Medicines for Malaria Venture

    Associations between Varied Susceptibilities to PfATP4 Inhibitors and Genotypes in Ugandan Plasmodium falciparum Isolates.

    Get PDF
    Among novel compounds under recent investigation as potential new antimalarial drugs are three independently developed inhibitors of the Plasmodium falciparum P-type ATPase (PfATP4): KAE609 (cipargamin), PA92, and SJ733. We assessed ex vivo susceptibilities to these compounds of 374 fresh P. falciparum isolates collected in Tororo and Busia districts, Uganda, from 2016 to 2019. Median IC50s were 65 nM for SJ733, 9.1 nM for PA92, and 0.5 nM for KAE609. Sequencing of pfatp4 for 218 of these isolates demonstrated many nonsynonymous single nucleotide polymorphisms; the most frequent mutations were G1128R (69% of isolates mixed or mutant), Q1081K/R (68%), G223S (25%), N1045K (16%), and D1116G/N/Y (16%). The G223S mutation was associated with decreased susceptibility to SJ733, PA92, and KAE609. The D1116G/N/Y mutations were associated with decreased susceptibility to SJ733, and the presence of mutations at both codons 223 and 1116 was associated with decreased susceptibility to PA92 and SJ733. In all of these cases, absolute differences in susceptibilities of wild-type (WT) and mutant parasites were modest. Analysis of clones separated from mixed field isolates consistently identified mutant clones as less susceptible than WT. Analysis of isolates from other sites demonstrated the presence of the G223S and D1116G/N/Y mutations across Uganda. Our results indicate that malaria parasites circulating in Uganda have a number of polymorphisms in PfATP4 and that modestly decreased susceptibility to PfATP4 inhibitors is associated with some mutations now present in Ugandan parasites

    Low Complexity of Infection Is Associated With Molecular Persistence of Plasmodium falciparum in Kenya and Tanzania

    Get PDF
    Background Plasmodium falciparum resistance to artemisinin-based combination therapies (ACTs) is a threat to malaria elimination. ACT-resistance in Asia raises concerns for emergence of resistance in Africa. While most data show high efficacy of ACT regimens in Africa, there have been reports describing declining efficacy, as measured by both clinical failure and prolonged parasite clearance times. Methods Three hundred children aged 2–10 years with uncomplicated P. falciparum infection were enrolled in Kenya and Tanzania after receiving treatment with artemether-lumefantrine. Blood samples were taken at 0, 24, 48, and 72 h, and weekly thereafter until 28 days post-treatment. Parasite and host genetics were assessed, as well as clinical, behavioral, and environmental characteristics, and host anti-malarial serologic response. Results While there was a broad range of clearance rates at both sites, 85% and 96% of Kenyan and Tanzanian samples, respectively, were qPCR-positive but microscopy-negative at 72 h post-treatment. A greater complexity of infection (COI) was negatively associated with qPCR-detectable parasitemia at 72 h (OR: 0.70, 95% CI: 0.53–0.94), and a greater baseline parasitemia was marginally associated with qPCR-detectable parasitemia (1,000 parasites/uL change, OR: 1.02, 95% CI: 1.01–1.03). Demographic, serological, and host genotyping characteristics showed no association with qPCR-detectable parasitemia at 72 h. Parasite haplotype-specific clearance slopes were grouped around the mean with no association detected between specific haplotypes and slower clearance rates. Conclusions Identifying risk factors for slow clearing P. falciparum infections, such as COI, are essential for ongoing surveillance of ACT treatment failure in Kenya, Tanzania, and more broadly in sub-Saharan Africa

    SARS-CoV-2-related MIS-C: a key to the viral and genetic causes of Kawasaki disease?

    Get PDF

    Inborn errors of OAS-RNase L in SARS-CoV-2-related multisystem inflammatory syndrome in children

    Get PDF
    Multisystem inflammatory syndrome in children (MIS-C) is a rare and severe condition that follows benign COVID-19. We report autosomal recessive deficiencies of OAS1, OAS2, or RNASEL in five unrelated children with MIS-C. The cytosolic double-stranded RNA (dsRNA)-sensing OAS1 and OAS2 generate 2'-5'-linked oligoadenylates (2-5A) that activate the single-stranded RNA-degrading ribonuclease L (RNase L). Monocytic cell lines and primary myeloid cells with OAS1, OAS2, or RNase L deficiencies produce excessive amounts of inflammatory cytokines upon dsRNA or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stimulation. Exogenous 2-5A suppresses cytokine production in OAS1-deficient but not RNase L-deficient cells. Cytokine production in RNase L-deficient cells is impaired by MDA5 or RIG-I deficiency and abolished by mitochondrial antiviral-signaling protein (MAVS) deficiency. Recessive OAS-RNase L deficiencies in these patients unleash the production of SARS-CoV-2-triggered, MAVS-mediated inflammatory cytokines by mononuclear phagocytes, thereby underlying MIS-C
    corecore