8 research outputs found

    Considerations for the selection of tests for SARS-CoV-2 molecular diagnostics

    No full text
    During the course of 2020, the outbreak of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) spread rapidly across the world. Clinical diagnostic testing for SARS-Cov-2 infection has relied on the real-time Reverse Transcriptase Polymerase Chain Reaction and is considered the gold standard assay. Commercial vendors and laboratories quickly mobilised to develop diagnostic tests to detect the novel coronavirus, which was fundamentally important in the pandemic response. These SARS-Cov-2 assays were developed in line with the Food Drug Administration-Emergency Use Authorization guidance. Although new tests are continuously being developed, information about SARS-CoV-2 diagnostic molecular test accuracy has been limited and at times controversial. Therefore, the analytical and clinical performance of SARS-CoV-2 test kits should be carefully considered by the appropriate regulatory authorities and evaluated by independent laboratory validation. This would provide improved end-user confidence in selecting the most reliable and accurate diagnostic test. Moreover, it is unclear whether some of these rapidly developed tests have been subjected to rigorous quality control and assurance required under good manufacturing practice. Variable target gene regions selected for currently available tests, potential mutation in target gene regions, non-standardized pre-analytic phase, a lack of manufacturer independent validation data all create difficulties in selecting tests appropriate for different countries and laboratories. Here we provide information on test criteria which are important in the assessment and selection of SARS-CoV-2 molecular diagnostic tests and outline the potential issues associated with a proportion of the tests on the market

    VARS1 mutations associated with neurodevelopmental disorder are located on a short amino acid stretch of the anticodon-binding domain

    No full text
    Majority of 37 human aminoacyl tRNA synthetases have been incriminated in diverse, mostly recessive, genetic diseases. In accordance with this, we uncovered a novel homozygous valyl-tRNA synthetase 1 (VARS1) gene variant, leading to p.T1068M mutation. As in the previously reported VARS1 mutations, the affected individual harboring p.T1068M was experiencing a neurodevelopmental disorder with intractable seizures, psychomotor retardation, and microcephaly. To link this phenotypic outcome with the observed genotype, we structurally modeled human VARS1 and interpreted p.T1068M within the spatial distribution of previously reported VARS1 variants. As a result, we uncovered that p.T1068M is clustered with three other pathogenic mutations in a 15 amino acid long stretch of the VARS1 anticodon-binding domain. While forming a helix-turn-helix motif within the anticodon-binding domain, this stretch harbors one-fourth of the reported VARS1 mutations. Here, we propose that these clustered mutations can destabilize the interactions between the anticodon-binding and the tRNA synthetase domains and thus hindering the optimal enzymatic activity of VARS1. We expect that the depiction of this mutation cluster will pave the way for the development of drugs, capable of alleviating the functional impact of these mutations

    Process development for an effective COVID-19 vaccine candidate harboring recombinant SARS-CoV-2 delta plus receptor binding domain produced by Pichia pastoris

    No full text
    Abstract Recombinant protein-based SARS-CoV-2 vaccines are needed to fill the vaccine equity gap. Because protein-subunit based vaccines are easier and cheaper to produce and do not require special storage/transportation conditions, they are suitable for low-/middle-income countries. Here, we report our vaccine development studies with the receptor binding domain of the SARS-CoV-2 Delta Plus strain (RBD-DP) which caused increased hospitalizations compared to other variants. First, we expressed RBD-DP in the Pichia pastoris yeast system and upscaled it to a 5-L fermenter for production. After three-step purification, we obtained RBD-DP with > 95% purity from a protein yield of > 1 g/L of supernatant. Several biophysical and biochemical characterizations were performed to confirm its identity, stability, and functionality. Then, it was formulated in different contents with Alum and CpG for mice immunization. After three doses of immunization, IgG titers from sera reached to > 106 and most importantly it showed high T-cell responses which are required for an effective vaccine to prevent severe COVID-19 disease. A live neutralization test was performed with both the Wuhan strain (B.1.1.7) and Delta strain (B.1.617.2) and it showed high neutralization antibody content for both strains. A challenge study with SARS-CoV-2 infected K18-hACE2 transgenic mice showed good immunoprotective activity with no viruses in the lungs and no lung inflammation for all immunized mice

    Case Reports Presentations

    No full text
    corecore