281 research outputs found

    Lysophosphatidic Acid-Mediated GPR35 Signaling in CX3CR1<sup>+</sup> Macrophages Regulates Intestinal Homeostasis.

    Get PDF
    Single-nucleotide polymorphisms in the gene encoding G protein-coupled receptor 35 (GPR35) are associated with increased risk of inflammatory bowel disease. However, the mechanisms by which GPR35 modulates intestinal immune homeostasis remain undefined. Here, integrating zebrafish and mouse experimental models, we demonstrate that intestinal Gpr35 expression is microbiota dependent and enhanced upon inflammation. Moreover, murine GPR35 &lt;sup&gt;+&lt;/sup&gt; colonic macrophages are characterized by enhanced production of pro-inflammatory cytokines. We identify lysophosphatidic acid (LPA) as a potential endogenous ligand produced during intestinal inflammation, acting through GPR35 to induce tumor necrosis factor (Tnf) expression in macrophages. Mice lacking Gpr35 in CX3CR1 &lt;sup&gt;+&lt;/sup&gt; macrophages aggravate colitis when exposed to dextran sodium sulfate, which is associated with decreased transcript levels of the corticosterone-generating gene Cyp11b1 and macrophage-derived Tnf. Administration of TNF in these mice restores Cyp11b1 expression and intestinal corticosterone production and ameliorates DSS-induced colitis. Our findings indicate that LPA signals through GPR35 in CX3CR1 &lt;sup&gt;+&lt;/sup&gt; macrophages to maintain TNF-mediated intestinal homeostasis

    Questioning Glutamate Excitotoxicity in Acute Brain Damage: The Importance of Spreading Depolarization

    Get PDF
    Background: Within 2 min of severe ischemia, spreading depolarization (SD) propagates like a wave through compromised gray matter of the higher brain. More SDs arise over hours in adjacent tissue, expanding the neuronal damage. This period represents a therapeutic window to inhibit SD and so reduce impending tissue injury. Yet most neuroscientists assume that the course of early brain injury can be explained by glutamate excitotoxicity, the concept that immediate glutamate release promotes early and downstream brain injury. There are many problems with glutamate release being the unseen culprit, the most practical being that the concept has yielded zero therapeutics over the past 30 years. But the basic science is also flawed, arising from dubious foundational observations beginning in the 1950s Methods: Literature pertaining to excitotoxicity and to SD over the past 60 years is critiqued. Results: Excitotoxicity theory centers on the immediate and excessive release of glutamate with resulting neuronal hyperexcitation. This instigates poststroke cascades with subsequent secondary neuronal injury. By contrast, SD theory argues that although SD evokes some brief glutamate release, acute neuronal damage and the subsequent cascade of injury to neurons are elicited by the metabolic stress of SD, not by excessive glutamate release. The challenge we present here is to find new clinical targets based on more informed basic science. This is motivated by the continuing failure by neuroscientists and by industry to develop drugs that can reduce brain injury following ischemic stroke, traumatic brain injury, or sudden cardiac arrest. One important step is to recognize that SD plays a central role in promoting early neuronal damage. We argue that uncovering the molecular biology of SD initiation and propagation is essential because ischemic neurons are usually not acutely injured unless SD propagates through them. The role of glutamate excitotoxicity theory and how it has shaped SD research is then addressed, followed by a critique of its fading relevance to the study of brain injury. Conclusions: Spreading depolarizations better account for the acute neuronal injury arising from brain ischemia than does the early and excessive release of glutamate.Grants to RDA from the Canadian Heart & Stroke Foundation, National Science Engineering and Research Council and the New Frontiers in Research Fund, to E.F from the National Research, Development and Innovation Office of Hungary, grant no. K134377; and the EU’s Horizon 2020 research and innovation program under grant agreement No. 739593, and to JPD from the DFG (German research Council) (DFG DR323/5-1,DFG DR 323/10-1) BMBF Bundesministerium fuer Bildung und Forschung (Era-Net Neuron EBio2, with funds from BMBF 01EW2004)

    The Critical Role of Spreading Depolarizations in Early Brain Injury: Consensus and Contention

    Get PDF
    Background: When a patient arrives in the emergency department following a stroke, a traumatic brain injury, or sudden cardiac arrest, there is no therapeutic drug available to help protect their jeopardized neurons. One crucial reason is that we have not identified the molecular mechanisms leading to electrical failure, neuronal swelling, and blood vessel constriction in newly injured gray matter. All three result from a process termed spreading depolarization (SD). Because we only partially understand SD, we lack molecular targets and biomarkers to help neurons survive after losing their blood flow and then undergoing recurrent SD. Methods: In this review, we introduce SD as a single or recurring event, generated in gray matter following lost blood flow, which compromises the Na/K pump. Electrical recovery from each SD event requires so much energy that neurons often die over minutes and hours following initial injury, independent of extracellular glutamate. Results: We discuss how SD has been investigated with various pitfalls in numerous experimental preparations, how overtaxing the Na/K ATPase elicits SD. Elevated K or glutamate are unlikely natural activators of SD. We then turn to the properties of SD itself, focusing on its initiation and propagation as well as on computer modeling. Conclusions: Finally, we summarize points of consensus and contention among the authors as well as where SD research may be heading. In an accompanying review, we critique the role of the glutamate excitotoxicity theory, how it has shaped SD research, and its questionable importance to the study of early brain injury as compared with SD theory.This work was supported by grants from the Heart and Stroke Foundation of Canada and the National Science and Engineering Research Council of Canada to RDA, an NIH grant (NS106901) to CWS, a National Research, Development and Innovation Office of Hungary grant (K1343777) and EU Horizon 2020 research and innovation program (739953) to EF and from DFG Deutsche Forschungsgemeinschaft (German Research Council) (DFG DR 323/5-1), DFG DR 323/10-1, and BMBF Bundesministerium fuer Bildung und Forschung (EraNet Neuron EBio2, with funds from BMBF 01EW2004) to JPD

    Questioning Glutamate Excitotoxicity in Acute Brain Damage: The Importance of Spreading Depolarization

    Get PDF
    Background Within 2 min of severe ischemia, spreading depolarization (SD) propagates like a wave through compromised gray matter of the higher brain. More SDs arise over hours in adjacent tissue, expanding the neuronal damage. This period represents a therapeutic window to inhibit SD and so reduce impending tissue injury. Yet most neuroscientists assume that the course of early brain injury can be explained by glutamate excitotoxicity, the concept that immediate glutamate release promotes early and downstream brain injury. There are many problems with glutamate release being the unseen culprit, the most practical being that the concept has yielded zero therapeutics over the past 30 years. But the basic science is also flawed, arising from dubious foundational observations beginning in the 1950s Methods Literature pertaining to excitotoxicity and to SD over the past 60 years is critiqued. Results Excitotoxicity theory centers on the immediate and excessive release of glutamate with resulting neuronal hyperexcitation. This instigates poststroke cascades with subsequent secondary neuronal injury. By contrast, SD theory argues that although SD evokes some brief glutamate release, acute neuronal damage and the subsequent cascade of injury to neurons are elicited by the metabolic stress of SD, not by excessive glutamate release. The challenge we present here is to find new clinical targets based on more informed basic science. This is motivated by the continuing failure by neuroscientists and by industry to develop drugs that can reduce brain injury following ischemic stroke, traumatic brain injury, or sudden cardiac arrest. One important step is to recognize that SD plays a central role in promoting early neuronal damage. We argue that uncovering the molecular biology of SD initiation and propagation is essential because ischemic neurons are usually not acutely injured unless SD propagates through them. The role of glutamate excitotoxicity theory and how it has shaped SD research is then addressed, followed by a critique of its fading relevance to the study of brain injury. Conclusions Spreading depolarizations better account for the acute neuronal injury arising from brain ischemia than does the early and excessive release of glutamate

    The Critical Role of Spreading Depolarizations in Early Brain Injury: Consensus and Contention

    Get PDF
    Background: When a patient arrives in the emergency department following a stroke, a traumatic brain injury, or sudden cardiac arrest, there is no therapeutic drug available to help protect their jeopardized neurons. One crucial reason is that we have not identified the molecular mechanisms leading to electrical failure, neuronal swelling, and blood vessel constriction in newly injured gray matter. All three result from a process termed spreading depolarization (SD). Because we only partially understand SD, we lack molecular targets and biomarkers to help neurons survive after losing their blood flow and then undergoing recurrent SD. Methods: In this review, we introduce SD as a single or recurring event, generated in gray matter following lost blood flow, which compromises the Na+/K+ pump. Electrical recovery from each SD event requires so much energy that neurons often die over minutes and hours following initial injury, independent of extracellular glutamate. Results: We discuss how SD has been investigated with various pitfalls in numerous experimental preparations, how overtaxing the Na+/K+ ATPase elicits SD. Elevated K+ or glutamate are unlikely natural activators of SD. We then turn to the properties of SD itself, focusing on its initiation and propagation as well as on computer modeling. Conclusions: Finally, we summarize points of consensus and contention among the authors as well as where SD research may be heading. In an accompanying review, we critique the role of the glutamate excitotoxicity theory, how it has shaped SD research, and its questionable importance to the study of early brain injury as compared with SD theory. © 2022, The Author(s)

    Headache in juvenile myoclonic epilepsy

    Get PDF
    The objective of this study was to assess the prevalence of and risk factors for primary headaches in juvenile myoclonic epilepsy (JME). Headache was classified in 75 patients with JME using a questionnaire, and its prevalence was correlated with the literature on the general population and clinical data. Headache was present in 47 patients. Thirty-one had migraine [20 migraine without aura (MO), 11 migraine with aura (MA)]. Fourteen patients with migraine had tension-type headache (TTH) in addition. Sixteen had only TTH. Comparison with the general population revealed a significantly higher prevalence of migraine (RR 4.4), MO (3.6), MA (7.3) and TTH (3.4) in JME. Risk factors for migraine and MO were female gender and for MA family history of migraine in first-degree relatives. Migraine and MA were associated with fairly controlled generalized tonic clonic seizures, MO with absences. Together with its strong genetic background, JME appears to be an attractive homogenous subtype of epilepsy for genetic research on migraine

    Genetic variants of the NOTCH3 gene in the elderly and magnetic resonance imaging correlates of age-related cerebral small vessel disease

    Get PDF
    Cerebral small vessel disease-related brain lesions such as white matter lesions and lacunes are common findings of magnetic resonance imaging in the elderly. These lesions are thought to be major contributors to disability in old age, and risk factors that include age and hypertension have been established. The radiological, histopathologic and clinical phenotypes of age-related cerebral small vessel disease remarkably resemble autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy, which is caused by mutations in NOTCH3. We hypothesized that genetic variations in NOTCH3 also play a role in age-related cerebral small vessel disease. We directly sequenced all 33 exons, the promoter and 3′-untranslated region of NOTCH3 in 195 participants with either coalescent white matter lesions or lacunes and compared the results to 82 randomly selected participants with no focal changes on magnetic resonance images in the Austrian Stroke Prevention Study. We detected nine common and 33 rare single nucleotide polymorphisms, of which 20 were novel. All common single nucleotide polymorphisms were genotyped in the entire cohort (n = 888), and four of them, rs1043994, rs10404382, rs10423702 and rs1043997, were associated significantly with both the presence and progression of white matter lesions. The association was confined to hypertensives, a result which we replicated in the Cohorts for Heart and Ageing Research in Genomic Epidemiology Consortium on an independent sample of 4773 stroke-free hypertensive elderly individuals of European descent (P = 0.04). The 33 rare single nucleotide polymorphisms were scattered over the NOTCH3 gene with three being located in the promoter region, 24 in exons (18 non-synonymous), three in introns and three in the 3′-untranslated region. None of the single nucleotide polymorphisms affected a cysteine residue. Sorting Intolerant From Tolerant, PolyPhen2 analyses and protein structure simulation consistently predicted six of the non-synonymous single nucleotide polymorphisms (H170R, P496L, V1183M, L1518M, D1823N and V1952M) to be functional, with four being exclusively or mainly detected in subjects with severe white matter lesions. In four individuals with rare non-synonymous single nucleotide polymorphisms, we noted anterior temporal lobe hyperintensity, hyperintensity in the external capsule, lacunar infarcts or subcortical lacunar lesions. None of the observed abnormalities were specific to cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy. This is the first comprehensive study investigating (i) the frequency of NOTCH3 variations in community-dwelling elderly and (ii) their effect on cerebral small vessel disease related magnetic resonance imaging phenotypes. We show that the NOTCH3 gene is highly variable with both common and rare single nucleotide polymorphisms spreading across the gene, and that common variants at the NOTCH3 gene increase the risk of age-related white matter lesions in hypertensives. Additional investigations are required to explore the biological mechanisms underlying the observed association

    Distributive politics and regional development: assessing the territorial distribution of Turkey’s public investment

    Get PDF
    Turkey is often perceived as a country with low bureaucratic capacity and prone to political manipulation and ‘pork-barrel’. This article tests whether this is the case, by analysing the extent to which politics, rather than equity and efficiency criteria, have determined the geographical allocation of public investment across the 81 provinces of Turkey between 2005 and 2012. The results show that although the Turkish government has indeed channelled public expenditures to reward its core constituencies, socioeconomic factors remained the most relevant predictors of investment. Moreover, in contrast to official regional development policy principles, we uncover the concentration of public investment in areas with comparatively higher levels of development. We interpret this as the state bureaucracy’s intentional strategy of focussing on efficiency by concentrating resources on ‘the better off among the most in need’
    corecore