13 research outputs found

    Expression and function of P75 neurotrophin receptor in the immune system

    Get PDF

    Loss of the branched-chain amino acid transporter CD98hc alters the development of colonic macrophages in mice

    Full text link
    Comprehensive development is critical for gut macrophages being essential for the intestinal immune system. However, the underlying mechanisms of macrophage development in the colon remain elusive. To investigate the function of branched-chain amino acids in the development of gut macrophages, an inducible knock-out mouse model for the branched-chain amino acid transporter CD98hc in CX3CR1+ macrophages was generated. The relatively selective deletion of CD98hc in macrophage populations leads to attenuated severity of chemically-induced colitis that we assessed by clinical, endoscopic, and histological scoring. Single-cell RNA sequencing of colonic lamina propria macrophages revealed that conditional deletion of CD98hc alters the "monocyte waterfall"-development to MHC II+ macrophages. The change in the macrophage development after deletion of CD98hc is associated with increased apoptotic gene expression. Our results show that CD98hc deletion changes the development of colonic macrophages

    Experimental and genetic evidence for the impact of CD5 and CD6 expression and variation in inflammatory bowel disease

    Full text link
    Crohn's disease (CD) and ulcerative colitis (UC) are inflammatory bowel diseases (IBD) resulting from the interaction of multiple environmental, genetic and immunological factors. CD5 and CD6 are paralogs encoding lymphocyte co-receptors involved in fine-tuning intracellular signals delivered upon antigen-specific recognition, microbial pattern recognition and cell adhesion. While CD5 and CD6 expression and variation is known to influence some immune-mediated inflammatory disorders, their role in IBD remains unclear. To this end, Cd5- and Cd6-deficient mice were subjected to dextran sulfate sodium (DSS)-induced colitis, the most widely used experimental animal model of IBD. The two mouse lines showed opposite results regarding body weight loss and disease activity index (DAI) changes following DSS-induced colitis, thus supporting Cd5 and Cd6 expression involvement in the pathophysiology of this experimental IBD model. Furthermore, DNA samples from IBD patients of the ENEIDA registry were used to test association of CD5 (rs2241002 and rs2229177) and CD6 (rs17824933, rs11230563, and rs12360861) single nucleotide polymorphisms with susceptibility and clinical parameters of CD (n=1352) and UC (n=1013). Generalized linear regression analyses showed association of CD5 variation with CD ileal location (rs2241002CC) and requirement of biological therapies (rs2241002C-rs2229177T haplotype), and with poor UC prognosis (rs2241002T-rs2229177T haplotype). Regarding CD6, association was observed with CD ileal location (rs17824933G) and poor prognosis (rs12360861G), and with left-sided or extensive UC, and absence of ankylosing spondylitis in IBD (rs17824933G). The present experimental and genetic evidence support a role for CD5 and CD6 expression and variation in IBD's clinical manifestations and therapeutic requirements, providing insight into its pathophysiology and broadening the relevance of both immunomodulatory receptors in immune-mediated disorders

    Metabolite-Sensing G Protein-Coupled Receptors Connect the Diet-Microbiota-Metabolites Axis to Inflammatory Bowel Disease

    No full text
    Increasing evidence has indicated that diet and metabolites, including bacteria- and host-derived metabolites, orchestrate host pathophysiology by regulating metabolism, immune system and inflammation. Indeed, autoimmune diseases such as inflammatory bowel disease (IBD) are associated with the modulation of host response to diets. One crucial mechanism by which the microbiota affects the host is signaling through G protein-coupled receptors (GPCRs) termed metabolite-sensing GPCRs. In the gut, both immune and nonimmune cells express GPCRs and their activation generally provide anti-inflammatory signals through regulation of both the immune system functions and the epithelial integrity. Members of GPCR family serve as a link between microbiota, immune system and intestinal epithelium by which all these components crucially participate to maintain the gut homeostasis. Conversely, impaired GPCR signaling is associated with IBD and other diseases, including hepatic steatosis, diabetes, cardiovascular disease, and asthma. In this review, we first outline the signaling, function, expression and the physiological role of several groups of metabolite-sensing GPCRs. We then discuss recent findings on their role in the regulation of the inflammation, their existing endogenous and synthetic ligands and innovative approaches to therapeutically target inflammatory bowel disease

    Altered purinergic signaling in the tumor associated immunologic microenvironment in metastasized non-small-cell lung cancer

    No full text
    OBJECTIVES: Purines are well-known as intracellular sources for energy but they also act as extracellular signaling molecules. In the recent years, there has been a growing interest in the therapeutic potential of purinergic signaling for cancer treatment. This is the first study to analyze lung purine levels and purinergic receptors in non-small-cell lung cancer (NSCLC) patients. MATERIALS AND METHODS: In this prospective clinical trial we enrolled 26 patients with NSCLC and 21 patients with chronic obstructive pulmonary disease (COPD) without signs of malignancy. The purine concentrations were analyzed in bronchoalveolar lavage fluid (BALF) using fluorescent/luminescent assays. Expression of purinergic receptors and ectonucleotidases were analyzed using real time quantitative polymerase chain reaction (RT-qPCR). RESULTS: Patients with NSCLC have significantly lower ATP and ADP concentrations in BALF than patients with COPD (p=0.006 and p=0.009). Expression of the ectonucleotidase CD39 is significantly higher in BAL cells from cancer patients compared to COPD (p=0.001) as well as in metastasized tumors compared to non-metastasized tumors (p=0.009). Receptor-analysis revealed a higher expression of P2X4 (p=0.03), P2X7 (p=0.001) and P2Y1 (p=0.003) in BAL cells of tumors with distant metastasis. CONCLUSION: Our data suggests a role for CD39 in lung cancer tumor microenvironment, influencing tumor invasiveness and metastasization. Potentially the increased degradation of ATP and ADP leads to a subversion of their anti-neoplastic effects. Furthermore P2Y1, P2X4 and P2X7 receptors are upregulated in BAL cells in metastatic disease. Our findings might facilitate the identification of new therapeutic targets for cancer immunotherapy

    Loss of the branched-chain amino acid transporter CD98hc alters the development of colonic macrophages in mice.

    No full text
    Comprehensive development is critical for gut macrophages being essential for the intestinal immune system. However, the underlying mechanisms of macrophage development in the colon remain elusive. To investigate the function of branched-chain amino acids in the development of gut macrophages, an inducible knock-out mouse model for the branched-chain amino acid transporter CD98hc in CX3CR1 macrophages was generated. The relatively selective deletion of CD98hc in macrophage populations leads to attenuated severity of chemically-induced colitis that we assessed by clinical, endoscopic, and histological scoring. Single-cell RNA sequencing of colonic lamina propria macrophages revealed that conditional deletion of CD98hc alters the "monocyte waterfall"-development to MHC II macrophages. The change in the macrophage development after deletion of CD98hc is associated with increased apoptotic gene expression. Our results show that CD98hc deletion changes the development of colonic macrophages

    Purinergic receptor type 6 contributes to airway inflammation and remodeling in experimental allergic airway inflammation.

    No full text
    Extracellular nucleotides have recently been identified as proinflammatory mediators involved in asthma pathogenesis by signaling via purinergic receptors, but the role of the purinergic receptor type 6 (P2Y6R) has not been previously investigated.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    NTPDase1/CD39 and aberrant purinergic signalling in the pathogenesis of COPD

    Get PDF
    Purinergic receptor activation via extracellular ATP is involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). Nucleoside triphosphate diphosphohydrolase-1/CD39 hydrolyses extracellular ATP and modulates P2 receptor signalling.We aimed to investigate the expression and function of CD39 in the pathogenesis of cigarette smoke-induced lung inflammation in patients and preclinical mouse models. CD39 expression and soluble ATPase activity were quantified in sputum and bronchoalveolar lavage fluid (BALF) cells in nonsmokers, smokers and COPD patients or mice with cigarette smoke-induced lung inflammation. In mice, pulmonary ATP and cytokine concentrations, inflammation and emphysema were analysed in the presence or absence of CD39.Following acute cigarette smoke exposure CD39 was upregulated in BALF cells in smokers with further increases in COPD patients. Acute cigarette smoke exposure induced CD39 upregulation in murine lungs and BALF cells, and ATP degradation was accelerated in airway fluids. CD39 inhibition and deficiency led to augmented lung inflammation; treatment with ATPase during cigarette smoke exposure prevented emphysema.Pulmonary CD39 expression and activity are increased in COPD. CD39 deficiency leads to enhanced emphysema in mice, while external administration of a functional CD39 analogue partially rescues the phenotype. The compensatory upregulation of pulmonary CD39 might serve as a protective mechanism in cigarette smoke-induced lung damage
    corecore