33 research outputs found

    Immune State Conversion of the Mesenteric Lymph Node in a Mouse Breast Cancer Model

    Get PDF
    Secondary lymphoid tissues, such as the spleen and lymph nodes (LNs), contribute to breast cancer development and metastasis in both anti- and pro-tumoral directions. Although secondary lymphoid tissues have been extensively studied, very little is known about the immune conversion in mesenteric LNs (mLNs) during breast cancer development. Here, we demonstrate inflammatory immune conversion of mLNs in a metastatic 4T1 breast cancer model. Splenic T cells were significantly decreased and continuously suppressed IFN-gamma production during tumor development, while myeloid-derived suppressor cells (MDSCs) were dramatically enriched. However, T cell numbers in the mLN did not decrease, and the MDSCs only moderately increased. T cells in the mLN exhibited conversion from a pro-inflammatory state with high IFN-gamma expression to an anti-inflammatory state with high expression of IL-4 and IL-10 in early- to late-stages of breast cancer development. Interestingly, increased migration of CD103(+)CD11b(+) dendritic cells (DCs) into the mLN, along with increased (1 -> 3)-beta-D-glucan levels in serum, was observed even in late-stage breast cancer. This suggests that CD103(+)CD11b(+) DCs could prime cancer-reactive T cells. Together, the data indicate that the mLN is an important lymphoid tissue contributing to breast cancer development

    TGF-β-dependent reprogramming of amino acid metabolism induces epithelial–mesenchymal transition in non-small cell lung cancers

    Get PDF
    Epithelial–mesenchymal transition (EMT)—a fundamental process in embryogenesis and wound healing—promotes tumor metastasis and resistance to chemotherapy. While studies have identified signaling components and transcriptional factors responsible in the TGF-β-dependent EMT, whether and how intracellular metabolism is integrated with EMT remains to be fully elucidated. Here, we showed that TGF-β induces reprogramming of intracellular amino acid metabolism, which is necessary to promote EMT in non-small cell lung cancer cells. Combined metabolome and transcriptome analysis identified prolyl 4-hydroxylase α3 (P4HA3), an enzyme implicated in cancer metabolism, to be upregulated during TGF-β stimulation. Further, knockdown of P4HA3 diminished TGF-β-dependent changes in amino acids, EMT, and tumor metastasis. Conversely, manipulation of extracellular amino acids induced EMT-like responses without TGF-β stimulation. These results suggest a previously unappreciated requirement for the reprogramming of amino acid metabolism via P4HA3 for TGF-β-dependent EMT and implicate a P4HA3 inhibitor as a potential therapeutic agent for cancer

    BCAA catabolism in brown fat controls energy homeostasis through SLC25A44.

    Get PDF
    Branched-chain amino acid (BCAA; valine, leucine and isoleucine) supplementation is often beneficial to energy expenditure; however, increased circulating levels of BCAA are linked to obesity and diabetes. The mechanisms of this paradox remain unclear. Here we report that, on cold exposure, brown adipose tissue (BAT) actively utilizes BCAA in the mitochondria for thermogenesis and promotes systemic BCAA clearance in mice and humans. In turn, a BAT-specific defect in BCAA catabolism attenuates systemic BCAA clearance, BAT fuel oxidation and thermogenesis, leading to diet-induced obesity and glucose intolerance. Mechanistically, active BCAA catabolism in BAT is mediated by SLC25A44, which transports BCAAs into mitochondria. Our results suggest that BAT serves as a key metabolic filter that controls BCAA clearance via SLC25A44, thereby contributing to the improvement of metabolic health

    幼小連携のカリキュラムについての一考察 : 小学1年生の「体育」「音楽」の授業観察を通して

    Get PDF
    本研究では、入学まもない小学1年生の「体育」「音楽」の授業観察や担任による子どもの行動への気づきを通して、子どもたちの「とまどい」や「つまずき」はどのようなものがあるのかを明らかにし、学びの芽生えの軸における一貫したカリキュラムについて検討するものである。 授業観察の結果や、担任による子どもの行動への気づきから、様々な子どもの「とまどい」や「つまずき」があることが明らかになったが、教師はすでに適切な取り組みをしていた。しかしながら、それらの子どもたちの「つまずき」は 1学期が終わっても、そのまま継続しているものもあるため、子どもにとって高すぎる「段差」であるのか、それとも、時間が経てば乗り越えられるのかどうかは明らかではない。 今後も授業観察を通して、子どもたちがその「段差」を乗り越えていけるのかどうか、さらには、幼児期の体育・音楽などの楽しい遊びが小学校の教科における知的好奇心として学習に組み替えられるにはどのような課題があるのかについて検討していきたいと考えている。The purpose of this study is to investigate what puzzlement or stumbling the 1st graders of elementary school would feel. Then, we will discuss the consistent curriculum focusing on the encouragement of children\u27s learning. From the results of class observations and the class teachers\u27 notice on their 1st graders\u27 behaviors, it was revealed that the children felt various puzzlement or stumbling, although the teachers had already taken proper actions for it. However, since some of the children\u27s problems (or "barriers") continue after the 1st term, it remained uncertain whether the problems were too hard for the children to overcome or solvable with the passage of time. In the future, we will continue to explore if the children will be able to overcome the problems by observing their classes in the next term

    Freezing of Gait in Parkinson's Disease and Interlimb Incoordination

    No full text

    高齢者のエピソード記憶におけるポジティヴィティ効果について : 実験デザインの違いに着目して

    No full text

    Differences in the mechanical properties of the developing cerebral cortical proliferative zone between mice and ferrets at both the tissue and single-cell levels

    No full text
    Cell-producing events in developing tissues are mechanically dynamic throughout the cell cycle. In many epithelial systems, cells are apicobasally tall, with nuclei and somata that adopt different apicobasal positions because nuclei and somata move in a cell cycle–dependent manner. This movement is apical during G2 phase and basal during G1 phase, whereas mitosis occurs at the apical surface. These movements are collectively referred to as interkinetic nuclear migration, and such epithelia are called pseudostratified. The embryonic mammalian cerebral cortical neuroepithelium is a good model for highly pseudostratified epithelia, and we previously found differences between mice and ferrets in both horizontal cellular density (greater in ferrets) and nuclear/somal movements (slower during G2 and faster during G1 in ferrets). These differences suggest that neuroepithelial cells alter their nucleokinetic behavior in response to physical factors that they encounter, which may form the basis for evolutionary transitions towards more abundant brain-cell production from mice to ferrets and primates. To address how mouse and ferret neuroepithelia may differ physically in a quantitative manner, we used atomic force microscopy to determine that the vertical stiffness of their apical surface is greater in ferrets (Young’s modulus = 1700 Pa) than in mice (1400 Pa). We systematically analyzed factors underlying the apical-surface stiffness through experiments to pharmacologically inhibit actomyosin or microtubules and to examine recoiling behaviors of the apical surface upon laser ablation and also through electron microscopy to observe adherens junction. We found that although both actomyosin and microtubules are partly responsible for the apical-surface stiffness, the mouse<ferret relationship in the apical-surface stiffness was maintained even in the presence of inhibitors. We also found that the stiffness of single, dissociated neuroepithelial cells is actually greater in mice (720 Pa) than in ferrets (450 Pa). Adherens junction was ultrastructurally comparable between mice and ferrets. These results show that the horizontally denser packing of neuroepithelial cell processes is a major contributor to the increased tissue-level apical stiffness in ferrets, and suggest that tissue-level mechanical properties may be achieved by balancing cellular densification and the physical properties of single cells

    Morphological Characterization of Tetraploids of Limonium sinuatum (L.) Mill. Produced by Oryzalin Treatment of Seeds

    Get PDF
    Limonium sinuatum (L.) Mill. (2n = 2x = 16) is a popular ornamental plant with dimorphism of pollen grains (type A and type B) and stigmas (papilla and cob-like). We applied polyploidy breeding to this species in order to introduce desirable traits. Tetraploid and mixoploid L. sinuatum plants were successfully obtained with oryzalin treatment of L. sinuatum ‘Early Blue’ seeds. All three tetraploids had increased leaf width, stomatal size, flower length, and pollen width compared to those of the diploid, and tetraploids had four germinal pores of pollen grains, whereas the diploid had three. All tetraploids had type A pollen grains and cob-like stigmas. Furthermore, the growth of cultivated tetraploid plants was slow, with later bolting and flowering times. Mixoploids Mixo-1 and Mixo-3 were estimated to be polyploidy periclinal chimeric plants consisting of a tetraploid L1 layer and diploid L2 layer, and Mixo-2 was estimated to be a polyploidy periclinal chimeric plant consisting of the diploid L1 layer and tetraploid L2 layer. Mixo-4 had tetraploid L1 and L2 layers. Mixoploids, except Mixo-4, had type A pollen grains and cob-like stigmas, whereas Mixo-4 had type B pollen grains and papilla stigmas. These polyploids will be useful as polyploidy breeding materials
    corecore