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Abstract: Limonium sinuatum (L.) Mill. (2n = 2x = 16) is a popular ornamental plant with dimorphism
of pollen grains (type A and type B) and stigmas (papilla and cob-like). We applied polyploidy
breeding to this species in order to introduce desirable traits. Tetraploid and mixoploid L. sinuatum
plants were successfully obtained with oryzalin treatment of L. sinuatum ‘Early Blue’ seeds. All three
tetraploids had increased leaf width, stomatal size, flower length, and pollen width compared to
those of the diploid, and tetraploids had four germinal pores of pollen grains, whereas the diploid
had three. All tetraploids had type A pollen grains and cob-like stigmas. Furthermore, the growth
of cultivated tetraploid plants was slow, with later bolting and flowering times. Mixoploids Mixo-1
and Mixo-3 were estimated to be polyploidy periclinal chimeric plants consisting of a tetraploid L1
layer and diploid L2 layer, and Mixo-2 was estimated to be a polyploidy periclinal chimeric plant
consisting of the diploid L1 layer and tetraploid L2 layer. Mixo-4 had tetraploid L1 and L2 layers.
Mixoploids, except Mixo-4, had type A pollen grains and cob-like stigmas, whereas Mixo-4 had type B
pollen grains and papilla stigmas. These polyploids will be useful as polyploidy breeding materials.

Keywords: bolting; cut flower; germinal pore; ornamental plant; polyploidy periclinal chimera;
Plumbaginaceae; polyploidy breeding

1. Introduction

Limonium sinuatum (L.) Mill., commonly known as statice, which belongs to the family
Plumbaginaceae native to the Mediterranean area, is a popular ornamental plant because
of its wide range of flower colors and long vase life. This species is diploid with 2n = 16 [1].
In the genus Limonium, pollen- and stigma-dimorphism can be observed and is related to
the self-incompatibility system. L. sinuatum produces type A and type B pollen as well as
papilla stigmas and cob-like stigmas. The combination of type A pollen and cob-like stigma
and the combination of type B pollen and papilla stigma do not lead to fertilization [2–5].

Generally, polyploids grow vigorously and their organs are larger than those of
diploids. Polyploidization is commonly carried out to introduce novel attractive features to
ornamental plants such as plant size, flower enlargement, and intense color of leaves and
flowers [6,7]. Phenotypic changes due to chromosome doubling are thought to be caused
by increased cell size, allele diversification, gene silencing, and gene dosage effects [6].
Chromosome doubling of plants can be achieved by treatment with polyploidizing agents
including colchicine, oryzalin, amiprophos-methyl, and trifluralin. Among them, colchicine
is the most commonly used agent [8], whereas oryzalin is recognized as an alternative
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because of its high chromosome doubling efficiency and low toxicity [9–13]. To date,
polyploids of ornamental plants including Agastache foeniculum [14], Alocasia sp. [10],
Gerbera jamesonii [15], Lychnis senno [9], Rhododendron spp. [16,17], and Rosa spp. [12,13]
have been obtained by oryzalin treatment.

L. sinuatum is difficult to crossbreed with different species except for some, and poly-
ploid breeding is expected as a method to drastically change the morphology of this species.
In the genus Limonium, there are a few reports regarding chromosome doubling using
polyploidizing agents [18]. Morgan et al. [19] produced allotetraploids of an interspecific
hybrid between L. perezii and L. sinuatum by oryzalin treatment of in vitro shoots. Mori
et al. [20] treated the seeds of L. bellidifolium with colchicine and obtained autotetraploids,
which tended to produce wider, thicker leaves and larger flowers than diploid plants. To
the best of our knowledge in the related literature, there are no reports on the produc-
tion of autotetraploids or detailed morphological characterization of tetraploid plants in
L. sinuatum.

Enhancing the desired traits in L. sinuatum polyploids is a way to create new cultivars
with novel attractive traits. Thus, in the present study, we examined the concentration and
treatment time of oryzalin required for chromosome doubling in the seeds of L. sinuatum in
order to achieve polyploidy breeding in L. sinuatum. We also investigated the morphology
of L. sinuatum polyploids.

2. Materials and Methods
2.1. Plant Materials and Oryzalin Treatments

We used the seeds of L. sinuatum ‘Early Blue’ (Fukukaen Nursery & Bulb Co. Ltd.,
Nagoya, Japan). The treatment of seeds with oryzalin was carried out in February 2017.
The seeds were surface-disinfected with 70% ethanol for 30 s, immersed in a 1% sodium
hypochlorite (NaClO) solution for 10 min, and then rinsed with distilled water. They were
treated with 0, 0.0005, 0.001, or 0.005% oryzalin (Wako Pure Chemical Industries Ltd.,
Osaka, Japan), which was dissolved in dimethyl sulfoxide (DMSO) for 24, 48, or 72 h at
25 ◦C in the dark on a device (Triple shaker NR-80; Taitec Corporation, Koshigaya, Japan)
for shaking culture (80 rpm). Forty seeds were used in one treatment, and five independent
experiments were performed. The treated seeds washed with tap water were sown in soil
in the cell trays. The cell trays were placed in a greenhouse heated to 20 ◦C. The grown
plants were potted into 7.5-cm plastic pots two months after cultivation, and their survival
rate was recorded.

2.2. Flow Cytometry Analysis and Chromosome Count

A flow cytometer (CyFlow PA; Partec GmbH, Görlitz, Germany) was used in flow
cytometry (FCM) analysis to estimate the ploidy level of the plants according to the
method described by Mori et al. [20] with some modifications. For the analysis, a leaf
disc of approximately 1 cm was cut out from a young leaf of plants potted in 7.5-cm pots.
Extraction of nuclear DNA and DAPI staining were carried out using a commercial kit
(CyStain UV Precise P; Sysmex Corporation, Kobe, Japan). The sample solution filtered
using a 40-µm mesh filter was analyzed using a flow cytometer.

To confirm the ploidy level, the chromosomes in the root tip cells of diploid and
putative tetraploid plants were observed by using previously reported methods [20]. The
prepared samples were examined under a light microscope (CX41; Olympus Corporation,
Tokyo, Japan).

2.3. Morphological Characterization

The polyploids potted in 7.5-cm pots were sequentially transferred to 24-cm clay pots
from the summer until the autumn of 2017, and then replanted into 45-cm large plastic
pots in the summer of 2018.

Morphological characterization of the leaves was performed in October 2017. Five
leaves were randomly selected from each plant, and their leaf length, leaf width, leaf
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soil plant analysis development (SPAD) value, stomatal size, and stomatal density were
examined. A chlorophyll meter (SPAD-502 plus; Konica Minolta, Inc., Tokyo, Japan)
was used to measure leaf SPAD values. Guard cells that make up the stomata were
observed under a scanning electron microscope (Miniscope® TM3030Plus; Hitachi High-
Tech Corporation, Tokyo, Japan). The growth of tetraploids at the flowering stage was
examined in March 2018. The plant height, number of shoots per plant, stem wing width,
flower length, calyx length, pollen size, pollen shape, stigma shape, and its pollen fertility
were examined. Pollens and stigmas were observed under a scanning electron microscope
(Miniscope® TM3030Plus). Carmine acetate staining was used for pollen fertility testing.

In June 2019, morphological characterization of mixoploids cultivated for two years in
a greenhouse was carried out by examining its stomatal size, stomatal density, pollen size,
pollen shape, and stigma shape. The methods of examination were described as above. In
addition, the leaf ploidy level was investigated again using a flow cytometer.

2.4. Spike Culture and Growth Characteristics of Regenerated Tetraploid Plants

Spikes were cultured to reproduce the tetraploids of L. sinuatum according to a previ-
ous report [21]. Since the spikes are larger than the axillary buds, they are easy to handle
and have high reproductive efficiency. The younger the spike, the higher the differentiation
rate. Spikes with uncolored calyxes, approximately 1 cm in length, were excised from
the bolted flower stalk and surface-disinfected with 70% ethanol for 60 s and immersed
in a 2% (w/v) NaClO solution containing 0.1% (v/v) Tween 20 for 20 min. After three
rinses with sterile distilled water, the spikes were cut to approximately 2 mm in length
and placed on a shoot regeneration medium, which consisted of the MS medium [22],
1 mg L−1 6-benzyladenine, 30 g L−1 sucrose, and 8 g L−1 agar, in a test tube. They were
cultured in a growth chamber at 20 ◦C under a 16 h day length (photosynthetic photon
flux density 35 µmol m−2 s−1) with light-emitting diode lights. Multiple regenerated
shoots were subcultured every four weeks with the shoot regeneration medium under the
conditions described above. Each shoot excised from multiple shoots was placed on the MS
medium without plant growth regulators for four weeks and was then placed on the root
regeneration medium, which consisted of the MS medium, 1 mg L−1 α-naphthaleneacetic
acid, 30 g L−1 sucrose, and 8 g L−1 agar, in a test tube. Diploid or tetraploid plantlets were
cultured for four or six weeks, respectively, under the same culture conditions as those for
shoot regeneration.

The regenerated plants were acclimated in a growth chamber at 15 ◦C under 12 h day
length (photosynthetic photon flux density 35 µmol m−2 s−1) with fluorescent lights for
three weeks. The cultured plants were potted in 24-cm pots on 15 June 2020, and cultivated
in a greenhouse at a ventilation temperature of 10 ◦C. The number of flower stalks and
leaves were recorded every two weeks, and the bolting and flowering days were recorded.
Three plants from each strain were investigated.

3. Results
3.1. Oryzalin Treatment

The survival rate of seedlings treated with oryzalin tended to decrease with the
increase in treatment time regardless of the treatment concentration (Table 1). The DNA
levels of all surviving plants were analyzed using a flow cytometer. Figure 1 presents the
histograms from the FCM analysis of the control diploid, tetraploid, and mixoploid plants.
A peak of tetraploid was the position with twice that in diploid. Mixoploid plants showed
double peaks.

The root tip cells of tetraploid plants had 32 chromosomes, which was twice as high
than that of diploid plants. Our analysis showed that three tetraploids were obtained by
the seed treatments of oryzalin at 0.001% for 24 h, 0.001% for 72 h, and 0.005% for 48 h. In
addition, seven mixoploids were obtained (Table 1).
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Table 1. Effect of oryzalin seed treatment on the survival and ploidy level of Limonium sinuatum seedlings 1.

Concentration
(%)

Period
(h) No. of Seeds Treated % of Surviving Seedlings

No. of Seedlings at Each Ploidy Level 2

Diploid Tetraploid Mixoploids

(2x) (4x) (2x + 4x)

0 (control) 0 200 66.0 a 3 123 0 0
0.0005 24 200 43.5 ab 94 0 0
0.0005 48 200 26.5 bc 50 0 1
0.0005 72 200 22.5 bc 31 0 2
0.001 24 200 38.5 bc 74 1 0
0.001 48 200 33.0 bc 62 0 1
0.001 72 200 16.0 cc 16 1 1
0.005 24 200 39.0 bc 74 0 0
0.005 48 200 28.5 bc 49 1 2
0.005 72 200 18.5 bc 25 0 0

1 Data were recorded two months after the oryzalin treatment. 2 Ploidy level was determined by flow cytometry using one leaf from each
plant. 3 Values represent the means of five independent experiments, each consisting of 40 seeds. Values within the same column followed
by different letters were significantly different at the level of 0.05 according to the Tukey–Kramer test.
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Figure 1. Histograms from the flow cytometry (FCM) analysis of nuclear DNA content in diploid,
tetraploid, and mixoploid Limonium sinuatum plants.

3.2. Morphological Characteristics of Tetraploid Leaves

A comparison of the morphological characteristics of leaves in tetraploids, which were
named Tetra-1, 2, and 3, is shown in Table 2. The leaf width of all three tetraploids was
significantly greater than that of the control plant, Cont-A, and the leaves of tetraploids
were rounder (Figure 2A). The leaf SPAD values of tetraploids Tetra-2 and Tetra-3 were
significantly higher than those of the diploid. The stomatal size of three tetraploids was
significantly greater than that of diploids, and the stomatal density of tetraploids was
significantly lower than that of the control plant (Figure 2B).

Table 2. Comparison of leaf morphological characteristics of tetraploid Limonium sinuatum 1.

Plant Strain Ploidy Level Leaf Length
(mm)

Leaf Width
(mm) Leaf Index 2 Leaf SPAD

Value 3
Stomatal Size (µm) Stomatal Density

(no. mm−2)Length Width

Cont-A 2x 98.2 b 4 26.2 b 0.26 b 39.6 b 33.4 c 23.4 b 67.0 a
Tetra-1 4x 119.0 ab 51.8 a 0.44 a 39.3 b 46.0 b 30.5 a 51.7 b
Tetra-2 4x 125.0 a 49.4 a 0.40 a 53.0 a 47.2 a 30.4 a 39.0 c
Tetra-3 4x 133.8 a 52.6 a 0.39 a 52.4 a 47.4 a 30.3 a 26.9 d

1 Five randomly selected leaves were measured from each plant. 2 Leaf index represents leaf width/leaf length. 3 SPAD = Soil Plant
Analysis Development. 4 Values within the same column followed by different letters were significantly different at the 0.05 level according
to the Tukey–Kramer test.
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Figure 2. Morphological characteristics of leaves (A), bars = 5 cm and guard cells (B), bars = 100 µm in diploid and tetraploid
Limonium sinuatum plants.

3.3. Morphological Characteristics of Tetraploids at the Flowering Stage

A comparison of the morphological characteristics of tetraploids at the flowering stage
is shown in Table 3. The stem wings of tetraploids Tetra-1 and Tetra-2 were more than three
times wider than those of the control plant. Although the flower length of all tetraploids
was significantly longer than that of the diploid plant, there was no difference in calyx
length, which is the main part for ornamental use, between the diploids and tetraploids
(Figure 3A,B).

Table 3. Comparison of the morphological characteristics of tetraploid Limonium sinuatum plants at the flowering stage 1.

Plant
Strain

Ploidy
Level

Plant
Height

(cm)

No. of
Shoot per

Plant

Stem
Wing

(mm) 2

Flower
Length
(mm)

Calyx
Length
(mm)

Pollen Size (µm) No. of
Germinal

Pores 3

Type of
Pollen
Grain

Type of
Stigma in

PistilsLength Width

Cont-A 2x 52 14 2.2 b 14.2 b 4 12.6 a 54.4 a 39.9 b 3 A cob-like
Tetra-1 4x 59 12 7.9 a 16.5 a 11.7 a 53.9 a 48.5 a 4 A cob-like
Tetra-2 4x 55 10 8.2 a 17.2 a 13.4 a 56.4 a 52.8 a 4 A cob-like
Tetra-3 4x 45 12 4.5 b 17.3 a 12.3 a 56.7 a 51.5 a 4 A cob-like

1 Five randomly selected shoots, flowers, and pollen grains were investigated from each plant. 2 The stem wing width was measured from
the center of the stem to the end of the wing. 3 Number of germinal pores of pollen grains was observed. 4 Values within the same column
followed by different letters were significantly different at the 0.05 level according to the Tukey–Kramer test.
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Pollen and stigma types are involved in cross-compatibility. This information is
important when using the obtained polyploids for future breeding. There are two pollen
types in L. sinuatum: type A with coarse pollen surface, and type B with fine pollen surface.
All pollen grains of tetraploids investigated in the present study coincidentally belonged to
type A. The pollen width of tetraploids was significantly higher than that of the control,
and the tetraploid pollen grains was close to a spherical shape. The pollen grains of
diploids were tricolpate with three germinal pores, whereas some observed pollen grains
of tetraploids were stephanocolporate with four germinal pores (Figure 3C). There are
two types of stigmas in this species: cob-like stigmas and papilla stigmas. Both control
diploids and tetraploid stigmas investigated in the present study were cob-like stigmas
(Figure 3D). The pollen fertility of Cont-A, Tetra-1, Tetra-2, and Tetra-3 was 86, 66, 82, and
87%, respectively, and the pollen fertility of Tetra-1 was significantly lower than that of the
others (data not shown).

3.4. Morphological Characteristics of Mixoploids

The morphological characteristics of survived mixoploids, which were named Mixo-1,
2, 3, 4, 5, and 6, at the flowering stage in the second year are shown in Table 4. Ploidy levels
in the leaves were analyzed by FCM again at the flowering stage in the second year; Mixo-1,
Mixo-2, Mixo-3, Mixo-5, and Mixo-6 were polyploid chimeras consisting of diploid and
tetraploid cells, and Mixo-4 was detected only in tetraploid cells. Mixoploids investigated
in this study, except for Mixo-4, had type A pollen grains and cob-like stigmas. However,
Mixo-4 contained type B pollen grains and papilla stigmas (Figure 4A,B). The stomatal
sizes of Mixo-1, Mixo-3, and Mixo-4 were significantly greater than those of the control
diploid, and the stomatal density of Mixo-1 and Mixo-3 was significantly lower than that
of the diploid. Mixo-2 had a wide range of pollen grains with four germinal pores. Mixo-4
had large pollen grains with four germinal pores.

Table 4. Comparison of the morphological characteristics of mixoploid Limonium sinuatum plants at the flowering stage in
the second year 1.

Plant
Strain

Stomatal Size (µm) Stomatal
Density

(no. mm−2)

Pollen Size (µm) No. of
Germinal

Pores 2

Type of
Pollen
Grains

Type of
Stigma of

Pistils

Ploidy Level
of Leaf 3

L1-L2 Putative
Ploidy LevelLength Width Length Width

Cont-A 35.1 d 4 21.1 de 77.2 bc 52.5 bc 42.5 bc 3 A cob-like 2x -
Mixo-1 45.8 b 28.9 b 42.7 d 56.5 ab 46.7 ab 3 A cob-like 2x + 4x 4x − 2x
Mixo-2 33.1 d 21.9 cd 80.4 bc 57.4 ab 48.9 a 4 A cob-like 2x + 4x 2x − 4x
Mixo-3 55.8 a 31.4 a 26.9 d 52.0 bc 42.3 bc 3 A cob-like 2x + 4x 4x − 2x
Mixo-4 40.6 c 24.1 c 58.9 cd 60.8 a 44.9 ab 4 B papilla 4x 4x − 4x
Mixo-5 27.8 e 19.2 e 130.3 a 49.6 c 39.6 c 3 A cob-like 2x + 4x 2x − 2x
Mixo-6 28.6 e 20.3 de 100.8 ab 52.6 bc 42.7 bc 3 A cob-like 2x + 4x 2x − 2x

1 Three randomly selected leaves and 12 randomly selected pollen grains were investigated from each plant. 2 Number of germinal pores
of pollen grains was observed. 3 Ploidy levels of leaves were analyzed by flow cytometry at the flowering stage in the second year. 4 Values
within the same column followed by different letters were significantly different at the 0.05 level according to the Tukey–Kramer test.
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3.5. Growth of Cultivated Tetraploid Plants

Diploid- and tetraploid-derived cultures except Tetra-2, which were propagated by
spike culture, were successfully acclimatized and planted in pots. Tetra-2 could not be
successfully cultivated due to complications. In the Cont-A-derived strain (i.e., in the
control diploid plants), the leaves were vigorously differentiated, and the plants developed
early and produced a large number of flower stalks. The number of leaves and flower
stalks of tetraploid Tetra-1- and Tetra-3-derived strains were significantly lower than that of
diploids after the middle stage of growth. The number of days from planting to flowering
in the Tetra-3-derived strain was high. In the Tetra-1-derived strain, there were few flower
stalks, and none reached flowering during the experimental period because of physiological
disorders (Figures 5 and 6).
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Cont-A-derived strain, tetraploid Tetra-1-derived strain, and Tetra-3-deribed strain of Limonium sinuatum. Arrows in figure
(B) indicate the flowering day. Bars indicate standard errors (n = 3). Values followed by different letters were significantly
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4. Discussion

Our in vivo seed treatments with oryzalin successfully produced polyploids of
L. sinuatum (Table 1). Morgan et al. [19,23] produced interspecific hybrids of L. perezii
and L. sinuatum and obtained allotetraploids after an oryzalin treatment of their embryos.
These findings indicate that oryzalin treatment is effective for producing polyploid plants
in Limonium spp. However, Mori et al. [20] produced tetraploids using in vivo colchicine
treatment in L. bellidifolium, and the production rate of tetraploids was higher than that
in the present study using in vivo oryzalin treatment in L. sinuatum. In the future, it is
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necessary to consider the use of colchicine in chromosome doubling of L. sinuatum for
its further improvement. In addition, in vitro treatments of spindle toxins may increase
the efficiency of chromosome doubling in this species because this treatment has been
successfully used to produce tetraploids in various ornamental plant species [9,10,24,25].

Tetraploids of L. sinuatum have wide leaves, large stomata, low stomata density, and
large flowers, and these morphological characteristics were consistent with those of poly-
ploid L. bellidifolium [20]. In addition, leaf ovalization [10], stomatal enlargement [26–28],
and flower enlargement [29–34] as a consequence of chromosome doubling has been re-
ported in other ornamental plants. Thick stem wings and inflorescence clogging in the
tetraploids obtained in this study are not desirable from an ornamental point of view. The
ornamental value of the tetraploids is low, and we consider that these need to be improved
by breeding. On the other hand, chromosomal doubling is known to bring resistance to
environmental stresses such as drought, salt stress, cold, and heat, in addition to morpho-
logical changes [35]. Drought tolerance of tetraploids will be associated with low stomatal
density [25]. Environmental stress tolerance is also a desirable trait in ornamental plants
and future research is expected to explore this aspect deeper.

Generally, pollen grains of the genus Limonium have three germinal pores. In this study,
the pollen grains of diploids had three germinal pores, whereas those of tetraploids had
four germinal pores. An increase in the germinal pore number by chromosome doubling
has been widely reported in plants [36,37]. In L. sinuatum, the number of germinal pores as
well as pollen size in pollen grains is useful as an index to determine the ploidy of pollen.

The cultured Limonium tetraploid strains grew slowly and had a later bolting and
flowering times. Polyploid plants have lower growth rates and tend to flower later than
the related diploids [38]. Pei et al. [39] reported that tetraploid radishes have later bolting
and flowering times than those of diploid radishes, and the levels of endogenous phytohor-
mones gibberellin (GA) 1 and GA4, which are presumed to promote flowering, were higher
in diploids than in tetraploids, whereas the amount of abscisic acid, which is considered as
a floral repressor, was higher in tetraploids than in diploids. Such physiological changes
may also occur in tetraploid Limonium species.

The shoot apical meristem of many higher plants consists of three cell layers: the
outermost epidermal layer (L1), the subepidermal layer (L2), and the inner corpus region
(L3) [40–42]. Cells of the L1 layer form the epidermis, those of the L2 layer form the
subepidermal mesophyll and germ cells, and those of the L3 layer form the internal and
vascular tissues [40,41,43]. In the present study, we estimated the ploidy of the L1 and L2
layers in Limonium mixoploids based on morphological observations. Mixo-1 and Mix-3
were estimated to be polyploidy periclinal chimeric plants consisting of tetraploid L1 tissue
and diploid L2 tissue (layer constitution: L1-L2 = 4x − 2x), because they had larger stomata,
and their pollen grains had three germinal pores and were about the same size as those of
diploids. Mixo-2 was estimated to be a polyploidy periclinal chimeric plant consisting of
diploid L1 tissue and tetraploid L2 tissue (L1-L2 = 2x − 4x) because the stomatal sizes were
approximately the same as those of the diploids, and the pollen grains had four germinal
pores and were larger than those of diploids. The second FCM analysis and observation
indicated that Mixo-4 had tetraploid leaves and flower stalks. This plant was determined
to be a mixoploid according to the first FCM analysis in the early growth period, but it
was estimated that tetraploid tissue grew more vigorously than diploid tissue during the
two-year cultivation period. In Mixo-5 and Mixo-6, no tetraploid tissues were found in
our morphological observations, and detailed investigation is required in the future. The
mixoploids obtained in the present study will be useful as breeding materials in Limonium
polyploidy breeding programs.

In conclusion, tetraploid and mixoploid L. sinuatum plants were successfully obtained
by oryzalin treatment of the seeds. However, the chromosomal doubling in L. sinuatum
did not provide a sufficient improvement in ornamental value. In the future, we would
like to cross a tetraploid with a diploid to create a triploid with desirable traits such as
voluminous inflorescence. On the other hand, it is known that chromosomal doubling may
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affect resistance to stress [38]. We want to investigate the physiological characteristics of
polyploidy.
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37. Najčevska, C.M.; Speckmann, G.J. Number of chloroplasts and pollen grain pores in diploid and tetraploid varieties of some

Trifolium species. Euphytica 1968, 17, 357–362. [CrossRef]
38. Sattler, M.C.; Carvalho, C.R.; Clarindo, W.R. The polyploidy and its key role in plant breeding. Planta 2016, 243, 281–296.

[CrossRef] [PubMed]
39. Pei, Y.; Yao, N.; He, L.; Deng, D.; Li, W.; Zhang, W. Comparative study of the morphological, physiological and molecular

characteristics between diploid and tetraploid radish (Raphunas sativus L.). Sci. Hortic. 2019, 257, 108739. [CrossRef]
40. Aida, R.; Sasaki, K.; Yoshioka, S.; Noda, N. Chimerism of chrysanthemum stems changes at the nodes during vegetative growth.

Plant. Biotechnol. 2020, 37, 373–375. [CrossRef]
41. Huala, E.; Sussex, I.M. Determination and cell interactions in reproductive meristems. Plant. Cell 1993, 5, 1157–1165. [CrossRef]
42. Satina, S.; Blakeslee, A.F.; Avery, A.G. Demonstration of the three germ layers in the shoot apex of Datura by means of induced

polyploidy in periclinal chimeras. Am. J. Bot. 1940, 27, 895–905. [CrossRef]
43. Hantke, S.S.; Carpenter, R.; Coen, E.S. Expression of floricaula in single cell layers of periclinal chimeras activates downstream

homeotic genes in all layers of floral meristems. Development 1995, 121, 27–35. [CrossRef] [PubMed]

http://doi.org/10.1023/A:1018384329409
http://doi.org/10.1007/BF02318964
http://doi.org/10.1016/j.scienta.2020.109482
http://doi.org/10.1007/s10681-010-0344-3
http://doi.org/10.1007/s11240-011-9947-1
http://doi.org/10.5511/plantbiotechnology.14.0916a
http://doi.org/10.1007/BF00038937
http://doi.org/10.1270/jsbbs1951.44.161
http://doi.org/10.1007/BF00034443
http://doi.org/10.1016/j.scienta.2006.07.026
http://doi.org/10.1270/jsbbs.56.303
http://doi.org/10.1016/0304-4238(96)00896-5
http://doi.org/10.1093/jxb/erv432
http://doi.org/10.1093/oxfordjournals.jhered.a107362
http://doi.org/10.1007/BF00056236
http://doi.org/10.1007/s00425-015-2450-x
http://www.ncbi.nlm.nih.gov/pubmed/26715561
http://doi.org/10.1016/j.scienta.2019.108739
http://doi.org/10.5511/plantbiotechnology.20.0519a
http://doi.org/10.2307/3869769
http://doi.org/10.1002/j.1537-2197.1940.tb13952.x
http://doi.org/10.1242/dev.121.1.27
http://www.ncbi.nlm.nih.gov/pubmed/7867506

	Introduction 
	Materials and Methods 
	Plant Materials and Oryzalin Treatments 
	Flow Cytometry Analysis and Chromosome Count 
	Morphological Characterization 
	Spike Culture and Growth Characteristics of Regenerated Tetraploid Plants 

	Results 
	Oryzalin Treatment 
	Morphological Characteristics of Tetraploid Leaves 
	Morphological Characteristics of Tetraploids at the Flowering Stage 
	Morphological Characteristics of Mixoploids 
	Growth of Cultivated Tetraploid Plants 

	Discussion 
	References

