8,374 research outputs found

    The improved nuclear parton distributions

    Get PDF
    In this paper we propose an improvement of the EKS nuclear parton distributions for the small x region of high energy processes, where the perturbative high parton density effects cannot be disregarded. We analyze the behavior of the ratios xGA/xGNxG_A/xG_N and F2A/F2DF_2^A/F_2^D and verify that at small x they are strongly modified when compared to the EKS predictions. The implications of our results for the heavy ion collisions in RHIC and LHC are discussed.Comment: 16 pages, 2 figure

    Modes of Information Flow

    Get PDF
    Information flow between components of a system takes many forms and is key to understanding the organization and functioning of large-scale, complex systems. We demonstrate three modalities of information flow from time series X to time series Y. Intrinsic information flow exists when the past of X is individually predictive of the present of Y, independent of Y's past; this is most commonly considered information flow. Shared information flow exists when X's past is predictive of Y's present in the same manner as Y's past; this occurs due to synchronization or common driving, for example. Finally, synergistic information flow occurs when neither X's nor Y's pasts are predictive of Y's present on their own, but taken together they are. The two most broadly-employed information-theoretic methods of quantifying information flow---time-delayed mutual information and transfer entropy---are both sensitive to a pair of these modalities: time-delayed mutual information to both intrinsic and shared flow, and transfer entropy to both intrinsic and synergistic flow. To quantify each mode individually we introduce our cryptographic flow ansatz, positing that intrinsic flow is synonymous with secret key agreement between X and Y. Based on this, we employ an easily-computed secret-key-agreement bound---intrinsic mutual information&mdashto quantify the three flow modalities in a variety of systems including asymmetric flows and financial markets.Comment: 11 pages; 10 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/ite.ht

    El girasol

    Get PDF

    Chiral fermion mass and dispersion relations at finite temperature in the presence of hypermagnetic fields

    Full text link
    We study the modifications to the real part of the thermal self-energy for chiral fermions in the presence of a constant external hypermagnetic field. We compute the dispersion relation for fermions occupying a given Landau level to first order in g'^2, g^2 and g_phi^2 and to all orders in g'B, where g' and g are the U(1)_Y and SU(2)_L couplings of the standard model, respectively, g_phi is the fermion Yukawa coupling, and B is the hypermagnetic field strength. We show that in the limit where the temperature is large compared to sqrt{g'B}, left- and right-handed modes acquire finite and different B-dependent masses due to the chiral nature of their coupling with the external field. Given the current bounds on the strength of primordial magnetic fields, we argue that the above is the relevant scenario to study the effects of magnetic fields on the propagation of fermions prior and during the electroweak phase transition.Comment: 11 pages 4 figures, published versio

    Molecular Control of the Amount, Subcellular Location and Activity State of Translation Elongation Factor 2 (eEF-2) in Neurons Experiencing Stress

    Get PDF
    Eukaryotic elongation factor 2 (eEF-2) is an important regulator of the protein translation machinery wherein it controls the movement of the ribosome along the mRNA. The activity of eEF-2 is regulated by changes in cellular energy status and nutrient availability, and posttranslational modifications such as phosphorylation and mono-ADP-ribosylation. However, the mechanisms regulating protein translation under conditions of cellular stress in neurons are unknown. Here we show that when rat hippocampal neurons experience oxidative stress (lipid peroxidation induced by exposure to cumene hydroperoxide; CH), eEF-2 is hyperphosphorylated and ribosylated resulting in reduced translational activity. The degradation of eEF-2 requires calpain proteolytic activity and is accompanied by accumulation of eEF-2 in the nuclear compartment. The subcellular localization of both native and phosphorylated forms of eEF-2 is influenced by CRM1 and 14.3.3, respectively. In hippocampal neurons p53 interacts with non-phosphorylated (active) eEF-2, but not with its phosphorylated form. The p53 – eEF-2 complexes are present in cytoplasm and nucleus, and their abundance increases when neurons experience oxidative stress. The nuclear localization of active eEF-2 depends upon its interaction with p53, as cells lacking p53 contain less active eEF-2 in the nuclear compartment. Overexpression of eEF-2 in hippocampal neurons results in increased nuclear levels of eEF-2, and decreased cell death following exposure to CH. Our results reveal novel molecular mechanisms controlling the differential subcellular localization and activity state of eEF-2 that may influence the survival status of neurons during periods of elevated oxidative stress.España, Ministerio de Ciencia e Innovación BFU2010-20882.España, Ministerio de Educación, Cultura y Deporte postdoctoral fellowship (EX2009-0918
    • …
    corecore