23 research outputs found

    Screening of bacterial DNA in bile sampled from healthy dogs and dogs suffering from liver- or gallbladder-associated disease

    Get PDF
    Although the biliary system is generally aseptic, gallbladder microbiota has been reported in humans and some animals apart from dogs. We screened and analyzed the bacterial deoxyribonucleic acid in canine gallbladders using bile sampled from 7 healthy dogs and 52 dogs with liver- or gallbladder-associated disease. PCR screening detected bacteria in 17.3% of diseased dogs (9/52) and none in healthy dogs. Microbiota analysis of PCR-positive samples showed that the microbial diversity differed between liver- and gallbladder-associated disease groups. Thus, a specific bacterial community appears to occur at a certain frequency in the bile of diseased dogs

    Combination treatment with highly bioavailable curcumin and NQO1 inhibitor exhibits potent antitumor effects on esophageal squamous cell carcinoma

    Get PDF
    Background: Esophageal squamous cell carcinoma (ESCC) is one of the most intractable cancers, so the development of novel therapeutics has been required to improve patient outcomes. Curcumin, a polyphenol from Curcuma longa, exhibits various health benefits including antitumor effects, but its clinical utility is limited because of low bioavailability. Theracurmin® (THC) is a highly bioavailable curcumin dispersed with colloidal submicron particles. Methods: We examined antitumor effects of THC on ESCC cells by cell viability assay, colony and spheroid formation assay, and xenograft models. To reveal its mechanisms, we investigated the levels of reactive oxygen species (ROS) and performed microarray gene expression analysis. According to those analyses, we focused on NQO1, which involved in the removal of ROS, and examined the effects of NQO1-knockdown or overexpression on THC treatment. Moreover, the therapeutic effect of THC and NQO1 inhibitor on ESCC patient-derived xenografts (PDX) was investigated. Results: THC caused cytotoxicity in ESCC cells, and suppressed the growth of xenografted tumors more efficiently than curcumin. THC increased ROS levels and activated the NRF2–NMRAL2P–NQO1 expressions. Inhibition of NQO1 in ESCC cells by shRNA or NQO1 inhibitor resulted in an increased sensitivity of cells to THC, whereas overexpression of NQO1 antagonized it. Notably, NQO1 inhibitor significantly enhanced the antitumor effects of THC in ESCC PDX tumors. Conclusions: These findings suggest the potential usefulness of THC and its combination with NQO1 inhibitor as a therapeutic option for ESCC

    HER2 G776S mutation promotes oncogenic potential in colorectal cancer cells when accompanied by loss of APC function

    Get PDF
    Clinical cancer genome sequencing detects oncogenic variants that are potential targets for cancer treatment, but it also detects variants of unknown significance. These variants may interact with each other to influence tumor pathophysiology, however, such interactions have not been fully elucidated. Additionally, the effect of target therapy for those variants also unclarified. In this study, we investigated the biological functions of a HER2 mutation (G776S mutation) of unknown pathological significance, which was detected together with APC mutation by cancer genome sequencing of samples from a colorectal cancer (CRC) patient. Transfection of the HER2 G776S mutation alone slightly increased the kinase activity and phosphorylation of HER2 protein, but did not activate HER2 downstream signaling or alter the cell phenotype. On the other hand, the HER2 G776S mutation was shown to have strong oncogenic potential when loss of APC function was accompanied. We revealed that loss of APC function increased Wnt pathway activity but also increased RAS-GTP, which increased ERK phosphorylation triggered by HER2 G776S transfection. In addition, afatinib, a pan-HER tyrosine kinase inhibitor, suppressed tumor growth in xenografts derived from HER2 G776S-transfected CRC cells. These findings suggest that this HER2 mutation in CRC may be a potential therapeutic target

    Endometrial Cancer Diagnosed at an Early Stage during Lynch Syndrome Surveillance: A Case Report

    Get PDF
    Lynch syndrome is an autosomal dominant inherited disorder caused by a germline pathogenic variant in DNA mismatch repair genes, resulting in multi-organ cancer. Annual transvaginal ultrasonography and endometrial biopsy are recommended for endometrial cancer surveillance in patients with Lynch syndrome in several guidelines; however, evidence is limited. Here, we present the case of a 51-year-old woman with endometrial cancer who underwent robot-assisted laparoscopic simple hysterectomy at an early stage detected by Lynch syndrome surveillance. The patient was a 51-year-old gravida zero woman without any medical history or symptoms. Her sister suffered from bladder, breast, rectal, and endometrial cancer and was diagnosed with Lynch syndrome using a hereditary cancer panel test (VistaSeq®). During gynecologic surveillance, the patient’s endometrial cytology was classified as Papanicolaou class III. Therefore, she underwent endometrial curettage with hysteroscopy and was diagnosed with atypical endometrial hyperplasia. Robot-assisted hysterectomy was performed with a final pathological diagnosis of endometrial cancer (endometrioid carcinoma, Grade 1), stage 1A. She has remained disease-free for more than 12 months. Owing to advances in genetic medicine, prophylactic and therapeutic surgeries for hereditary cancers are increasing. To achieve an early diagnosis and treatment of Lynch syndrome-associated cancers, the importance of Lynch syndrome surveillance should be more widely recognized

    Association of L-type amino acid transporter 1 (LAT1) with the immune system and prognosis in invasive breast cancer

    Get PDF
    L-type amino acid transporter 1 (LAT1), also referred to as SLC7A5, is believed to regulate tumor metabolism and be associated with tumor proliferation. In invasive breast cancer, we clinicopathologically investigated the utility of LAT1 expression. LAT1 expression was evaluated via immunohistochemistry analyses in 250 breast cancer patients undergoing long-term follow-up. We assessed the relationships between LAT1 expression and patient outcomes and clinicopathological factors. Breast cancer-specific survival stratified by LAT1 expression was assessed. Human epidermal growth factor receptor 2 (HER2)-positive patients with metastasis received trastuzumab therapy. The density of tumor-infiltrating lymphocytes (TILs) was evaluated according to the International Working Group guidelines. In the current study, high LAT1 expression was significantly correlated with estrogen receptor (ER) negativity, progesterone receptor negativity, high histological grade, increased TILs, and programmed death ligand 1 positivity. Among the ER-positive and HER2-negative patients, high LAT1 was an independent indicator of poor outcomes (hazard ratio (HR) = 2.97; 95% confidence interval (CI), 1.16–7.62; p = 0.023). Moreover, high LAT1 expression was an independent poor prognostic factor in luminal B-like breast cancer with aggressive features (HR = 3.39; 95% CI 1.35–8.52; p = 0.0094). In conclusion, high LAT1 expression could be used to identify a subgroup of invasive breast cancer characterized by aggressive behavior and high tumor immunoreaction. Our findings suggest that LAT1 might be a candidate therapeutic target for breast cancer patients, particularly those with luminal B-like type breast cancer

    Enhancing the accumulation level of 3-[18F]fluoro-L-α-methyltyrosine in tumors by preloading probenecid

    No full text
    Introduction: 3-[18F]fluoro-α-methyl-L-tyrosine ([18F]FAMT) is a promising amino acid tracer targeting L-type amino acid transporter 1 (LAT1). One concern regarding the diagnosis using [18F]FAMT is the possibility of false-negative findings because of its relatively low accumulation level even in malignant tumors. Moreover, preloading probenecid, an organic anion transporter inhibitor, markedly increased the tumor accumulation level of radioiodine-labeled α-methyltyrosine. In this study, we evaluated the usefulness of preloading probenecid in improving the tumor-imaging capability of [18F]FAMT.Methods: Three biodistribution studies of [18F]FAMT were conducted in normal mice to elucidate the usefulness of probenecid preloading. Then, a biodistribution study and positron emission tomography (PET) imaging of [18F]FAMT were conducted with or without probenecid injection in tumor-bearing mice.Results: Probenecid preloading significantly delayed blood clearance and consequently enhanced the accumulation of [18F]FAMT in the pancreas, a LAT1-positive organ. The effects of probenecid preloading were independent of the administration route. Tumor accumulation level in the biodistribution study and the maximum standardized uptake value in tumors on PET imaging of the probenecid preloading group were significantly higher than those of the control (without probenecid injection) group in tumor-bearing mice.Conclusions: Preloading probenecid significantly delayed blood clearance and consequently enhanced the accumulation of [18F]FAMT in tumors. These results indicate that preloading probenecid could improve the diagnostic accuracy of [18F]FAMT
    corecore