9 research outputs found

    Circular pattern matching with k mismatches

    Get PDF
    The k-mismatch problem consists in computing the Hamming distance between a pattern P of length m and every length-m substring of a text T of length n, if this distance is no more than k. In many real-world applications, any cyclic shift of P is a relevant pattern, and thus one is interested in computing the minimal distance of every length-m substring of T and any cyclic shift of P. This is the circular pattern m

    Range Shortest Unique Substring queries

    No full text
    Let be a string of length n and be the substring of starting at position i and ending at position j. A substring of is a repeat if it occurs more than once in; otherwise, it is a unique substring of. Repeats and unique substrings are of great interest in computational biology and in information retrieval. Given string as input, the Shortest Unique Substring problem is to find a shortest substring of that does not occur elsewhere in. In this paper, we introduce the range variant of this problem, which we call the Range Shortest Unique Substring problem. The task is to construct a data structure over answering the following type of online queries efficiently. Given a range, return a shortest substring of with exactly one occurrence in. We present an -word data structure with query time, where is the word size. Our construction is based on a non-trivial reduction allowing us to apply a recently introduced optimal geometric data structure [Chan et al. ICALP 2018]

    Online Algorithms on Antipowers and Antiperiods

    No full text
    International audienceThe definition of antipower introduced by Fici et al. (ICALP 2016) captures the notion of being the opposite of a power : a sequence of k pairwise distinct blocks of the same length. Recently, Alamro et al. (CPM 2019) defined a string to have an antiperiod if it is a prefix of an antipower, and gave complexity bounds for the offline computation of the minimum antiperiod and all the antiperiods of a word. In this paper, we address the same problems in the online setting. Our solutions rely on new arrays that compactly and incrementally store antiperiods and antipowers as the word grows, obtaining in the process this information for all the word's prefixes. We show how to compute those arrays online in O(n log n) space, O(n log n) time, and o(n) delay per character, for any constant > 0. Running times are worst-case and hold with high probability. We also discuss more space-efficient solutions returning the correct result with high probability, and small data structures to support random access to those arrays
    corecore