1,451 research outputs found

    Diattenuation of Brain Tissue and its Impact on 3D Polarized Light Imaging

    Full text link
    3D-Polarized Light Imaging (3D-PLI) reconstructs nerve fibers in histological brain sections by measuring their birefringence. This study investigates another effect caused by the optical anisotropy of brain tissue - diattenuation. Based on numerical and experimental studies and a complete analytical description of the optical system, the diattenuation was determined to be below 4 % in rat brain tissue. It was demonstrated that the diattenuation effect has negligible impact on the fiber orientations derived by 3D-PLI. The diattenuation signal, however, was found to highlight different anatomical structures that cannot be distinguished with current imaging techniques, which makes Diattenuation Imaging a promising extension to 3D-PLI.Comment: 32 pages, 15 figure

    A Jones matrix formalism for simulating three-dimensional polarized light imaging of brain tissue

    Get PDF
    The neuroimaging technique three-dimensional polarized light imaging (3D-PLI) provides a high-resolution reconstruction of nerve fibres in human post-mortem brains. The orientations of the fibres are derived from birefringence measurements of histological brain sections assuming that the nerve fibres - consisting of an axon and a surrounding myelin sheath - are uniaxial birefringent and that the measured optic axis is oriented in direction of the nerve fibres (macroscopic model). Although experimental studies support this assumption, the molecular structure of the myelin sheath suggests that the birefringence of a nerve fibre can be described more precisely by multiple optic axes oriented radially around the fibre axis (microscopic model). In this paper, we compare the use of the macroscopic and the microscopic model for simulating 3D-PLI by means of the Jones matrix formalism. The simulations show that the macroscopic model ensures a reliable estimation of the fibre orientations as long as the polarimeter does not resolve structures smaller than the diameter of single fibres. In the case of fibre bundles, polarimeters with even higher resolutions can be used without losing reliability. When taking the myelin density into account, the derived fibre orientations are considerably improved.Comment: 20 pages, 8 figure

    Finite-Difference Time-Domain Simulation for Three-dimensional Polarized Light Imaging

    Full text link
    Three-dimensional Polarized Light Imaging (3D-PLI) is a promising technique to reconstruct the nerve fiber architecture of human post-mortem brains from birefringence measurements of histological brain sections with micrometer resolution. To better understand how the reconstructed fiber orientations are related to the underlying fiber structure, numerical simulations are employed. Here, we present two complementary simulation approaches that reproduce the entire 3D-PLI analysis: First, we give a short review on a simulation approach that uses the Jones matrix calculus to model the birefringent myelin sheaths. Afterwards, we introduce a more sophisticated simulation tool: a 3D Maxwell solver based on a Finite-Difference Time-Domain algorithm that simulates the propagation of the electromagnetic light wave through the brain tissue. We demonstrate that the Maxwell solver is a valuable tool to better understand the interaction of polarized light with brain tissue and to enhance the accuracy of the fiber orientations extracted by 3D-PLI.Comment: 13 pages, 5 figure

    Maximizing the Bandwidth Efficiency of the CMS Tracker Analog Optical Links

    Full text link
    The feasibility of achieving faster data transmission using advanced digital modulation techniques over the current CMS Tracker analog optical link is explored. The spectral efficiency of Quadrature Amplitude Modulation -Orthogonal Frequency Division Multiplexing (QAM-OFDM) makes it an attractive option for a future implementation of the readout link. An analytical method for estimating the data-rate that can be achieved using OFDM over the current optical links is described and the first theoretical results are presented

    New Lithium Measurements in Metal-Poor Stars

    Get PDF
    We provide *lambda*6708 Li 1 measurements in 37 metal-poor stars, most of which are poorly-studied or have no previous measurements, from high-resolution and high-S/N spectroscopy obtained with the McDonald Observatory 2.1m and 2.7m telescopes. The typical line strength and abundance uncertainties, confirmed by the thinness of the Spite plateau manifested by our data and by comparison with previous measurements, are <=4 mAng and <=0.07-0.10 dex respectively. Two rare moderately metal-poor solar-Teff dwarfs, HIP 36491 and 40613, with significantly depleted but still detectable Li are identified; future light element determinations in the more heavily depeleted HIP 40613 may provide constraints on the Li depletion mechanism acting in this star. We note two moderately metal-poor and slightly evolved stars, HIP 105888 and G265-39, that appear to be analogs of the low-Li moderately metal-poor subgiant HD 201889. Preliminary abundance analysis of G 265-39 finds no abnormalities that suggest the low Li content is associated with AGB mass-transfer or deep mixing and p-capture. We also detect line doubling in HIP 4754, heretofore classified as SB1.Comment: Accepted for publication in PASP, volume 912 (Feb 2012) 15 pages, 3 figures, 2 table

    The Revival of Galactic Cosmic Ray Nucleosynthesis?

    Get PDF
    Because of the roughly linear correlation between Be/H and Fe/H in low metallicity halo stars, it has been argued that a ``primary'' component in the nucleosynthesis of Be must be present in addition to the ``secondary'' component from standard Galactic cosmic ray nucleosynthesis. In this paper we critically re-evaluate the evidence for the primary versus secondary character of Li, Be, and B evolution, analyzing both in the observations and in Galactic chemical evolution models. While it appears that [Be/H] versus [Fe/H] has a logarithmic slope near 1, it is rather the Be-O trend that directly arises from the physics of spallation production. Using new abundances for oxygen in halo stars based on UV OH lines, we find that the Be-O slope has a large uncertainty due to systematic effects, rendering it difficult to distinguish from the data between the secondary slope of 2 and the primary slope of 1. The possible difference between the Be-Fe and Be-O slopes is a consequence of the variation in O/Fe versus Fe: recent data suggests a negative slope rather than zero (i.e., Fe \propto O) as is often assumed. In addition to a phenomenological analysis of Be and B evolution, we have also examined the predicted LiBeB, O, and Fe trends in Galactic chemical evolution models which include outflow. Based on our results, it is possible that a good fit to the LiBeB evolution requires only traditional the Galactic cosmic ray spallation, and the (primary) neutrino-process contribution to B11. We thus suggest that these two processes might be sufficient to explain Li6, Be, and B evolution in the Galaxy, without the need for an additional primary source of Be and B.Comment: 25 pages, latex, 8 ps figures, figure 1 correcte

    Towards ultra-high resolution 3D reconstruction of a whole rat brain from 3D-PLI data

    Full text link
    3D reconstruction of the fiber connectivity of the rat brain at microscopic scale enables gaining detailed insight about the complex structural organization of the brain. We introduce a new method for registration and 3D reconstruction of high- and ultra-high resolution (64 μ\mum and 1.3 μ\mum pixel size) histological images of a Wistar rat brain acquired by 3D polarized light imaging (3D-PLI). Our method exploits multi-scale and multi-modal 3D-PLI data up to cellular resolution. We propose a new feature transform-based similarity measure and a weighted regularization scheme for accurate and robust non-rigid registration. To transform the 1.3 μ\mum ultra-high resolution data to the reference blockface images a feature-based registration method followed by a non-rigid registration is proposed. Our approach has been successfully applied to 278 histological sections of a rat brain and the performance has been quantitatively evaluated using manually placed landmarks by an expert.Comment: 9 pages, Accepted at 2nd International Workshop on Connectomics in NeuroImaging (CNI), MICCAI'201

    The Age Of Globular Clusters In Light Of Hipparcos: Resolving the Age Problem?

    Get PDF
    We review five independent techniques which are used to set the distance scale to globular clusters, including subdwarf main sequence fitting utilizing the recent Hipparcos parallax catalogue. These data together all indicate that globular clusters are farther away than previously believed, implying a reduction in age estimates. This new distance scale estimate is combined with a detailed numerical Monte Carlo study designed to assess the uncertainty associated with the theoretical age-turnoff luminosity relationship in order to estimate both the absolute age and uncertainty in age of the oldest globular clusters. Our best estimate for the mean age of the oldest globular clusters is now 11.5±1.311.5\pm 1.3 Gyr, with a one-sided, 95% confidence level lower limit of 9.5 Gyr. This represents a systematic shift of over 2 σ\sigma compared to our earlier estimate, due completely to the new distance scale---which we emphasize is not just due to the Hipparcos data. This now provides a lower limit on the age of the universe which is consistent with either an open universe, or a flat, matter dominated universe (the latter requiring H_0 \le 67 \kmsmpc). Our new study also explicitly quantifies how remaining uncertainties in the distance scale and stellar evolution models translate into uncertainties in the derived globular cluster ages. Simple formulae are provided which can be used to update our age estimate as improved determinations for various quantities become available.Comment: 41 pages, including 10 eps figs, uses aaspp4.sty and flushrt.sty, submitted to Ap.J., revised to incorporate FULL Hipparcos catalogue dat
    corecore