3,210 research outputs found

    Parallel Unsmoothed Aggregation Algebraic Multigrid Algorithms on GPUs

    Full text link
    We design and implement a parallel algebraic multigrid method for isotropic graph Laplacian problems on multicore Graphical Processing Units (GPUs). The proposed AMG method is based on the aggregation framework. The setup phase of the algorithm uses a parallel maximal independent set algorithm in forming aggregates and the resulting coarse level hierarchy is then used in a K-cycle iteration solve phase with a ℓ1\ell^1-Jacobi smoother. Numerical tests of a parallel implementation of the method for graphics processors are presented to demonstrate its effectiveness.Comment: 18 pages, 3 figure

    Association Between Air Pollution and Low Birth Weight: A Community-Based Study

    Get PDF
    The relationship between maternal exposure to air pollution during periods of pregnancy (entire and specific periods) and birth weight was investigated in a well-defined cohort. Between 1988 and 1991, all pregnant women living in four residential areas of Beijing were registered and followed from early pregnancy until delivery. Information on individual mothers and infants was collected. Daily air pollution data were obtained independently. The sample for analysis included 74,671 first-parity live births were gestational age 37-44 weeks. Multiple linear regression and logistic regression were used to estimate the effects of air pollution on birth weight and low birth weight (< 2,500 g), adjusting for gestational age, residence, year of birth, maternal age, and infant gender. There was a significant exposure-response relationship between maternal exposures to sulfur dioxide (SO2) and total suspended particles (TSP) during the third trimester of pregnancy and infant birth weight. The adjusted odds ratio for low birth weight was 1.11 (95% CI, 1.06-1.16) for each 100 micrograms/m3 increase in SO2 and 1.10 (95% CI, 1.05-1.14) for each 100 micrograms/m3 increase in TSP. The estimated reduction in birth weight was 7.3 g and 6.9 g for each 100 micrograms/m3 increase in SO2 and in TSP, respectively. The birth weight distribution of the high-exposure group was more skewed toward the left tail (i.e., with higher proportion of births < 2,500 g) than that of the low-exposure group. Although the effects of other unmeasured risk factors cannot be excluded with certainty, our data suggests that TSP and SO2, or a more complex pollution mixture associated with these pollutants, contribute to an excess risk of low birth weight in the Beijing population.National Institute of Environmental Health Sciences (ES05947, ES08337); National Institute of Child Health & Human Development (R01 HD32505); Department of Health and Human Services (MCJ-259501, HRSA 5 T32 PE10014

    Numerical and experimental study of ethanol combustion in an industrial gas turbine

    Get PDF
    The application of ethanol as a biomass-derived fuel in OPRA’s 2 MWe class OP16 radial gas turbine has been studied both numerically and experimentally. The main purpose of this work is to validate the numerical model for future work on biofuel combustion. For the experimental investigation a modified OP16 gas turbine combustor has been used. This reverse-flow tubular combustor is a diffusion type combustor that has been adjusted to be suitable for numerical validation. Two series of ethanol burning experiments have been conducted at atmospheric pressure with a thermal input ranging from 16 to 72 kW. Exhaust gas temperature and emissions (CO, CO2, O2, NOx) were measured at various fuel flow rates while keeping the air flow rate and air temperature constant. In addition, the temperature profile of the combustor liner has been determined by applying thermochromic paint. CFD simulations have been performed in Ansys Fluent for four different operating conditions considered in the experiments. The simulations are based on a 3D RANS code. Fuel droplets representing the fuel spray are tracked throughout the domain while they interact with the gas phase. A temperature profile based on measurements has been prescribed on the liner to account for heat transfer through the flame tube wall. Detailed combustion chemistry is included by using the steady laminar flamelet model. The predicted levels of CO2 and O2 in the exhaust gas are in good agreement with the experimental results. The calculated and measured exhaust gas temperatures show a close match for the low power condition, but more significant deviations are observed in the higher load cases. Also, the comparison pointed out that the CFD model needs to be improved regarding the prediction of the pollutants CO and NOx. Chemiluminescence of CH radicals in the flame front indicated that the flame extends up to the liner, suggesting the presence of fuel near the surface. However, this result was not confirmed by liner temperature measurements using thermochromic paint.</jats:p

    Weighted maximal regularity estimates and solvability of non-smooth elliptic systems II

    Full text link
    We continue the development, by reduction to a first order system for the conormal gradient, of L2L^2 \textit{a priori} estimates and solvability for boundary value problems of Dirichlet, regularity, Neumann type for divergence form second order, complex, elliptic systems. We work here on the unit ball and more generally its bi-Lipschitz images, assuming a Carleson condition as introduced by Dahlberg which measures the discrepancy of the coefficients to their boundary trace near the boundary. We sharpen our estimates by proving a general result concerning \textit{a priori} almost everywhere non-tangential convergence at the boundary. Also, compactness of the boundary yields more solvability results using Fredholm theory. Comparison between classes of solutions and uniqueness issues are discussed. As a consequence, we are able to solve a long standing regularity problem for real equations, which may not be true on the upper half-space, justifying \textit{a posteriori} a separate work on bounded domains.Comment: 76 pages, new abstract and few typos corrected. The second author has changed nam

    Type 2 diabetes and risk of hip fractures and non-skeletal fall injuries in the elderly: A study from the Fractures and Fall Injuries in the Elderly Cohort (FRAILCO)

    Get PDF
    Questions remain about whether the increased risk of fractures in patients with type 2 diabetes (T2DM) is related mainly to increased risk of falling or to bone‐specific properties. The primary aim of this study was to investigate the risk of hip fractures and non‐skeletal fall injuries in older men and women with and without T2DM. We included 429,313 individuals (aged 80.8 ± 8.2 years [mean ± SD], 58% women) from the Swedish registry “Senior Alert” and linked the data to several nationwide registers. We identified 79,159 individuals with T2DM (45% with insulin [T2DM‐I], 41% with oral antidiabetics [T2DM‐O], and 14% with no antidiabetic treatment [T2DM‐none]) and 343,603 individuals without diabetes. During a follow‐up of approximately 670,000 person‐years, we identified in total 36,132 fractures (15,572 hip fractures) and 20,019 non‐skeletal fall injuries. In multivariable Cox regression models where the reference group was patients without diabetes and the outcome was hip fracture, T2DM‐I was associated with increased risk (adjusted hazard ratio (HR) [95% CI] 1.24 [1.16–1.32]), T2DM‐O with unaffected risk (1.03 [0.97–1.11]), and T2DM‐none with reduced risk (0.88 [0.79–0.98]). Both the diagnosis of T2DM‐I (1.22 [1.16–1.29]) and T2DM‐O (1.12 [1.06–1.18]) but not T2DM‐none (1.07 [0.98–1.16]) predicted non‐skeletal fall injury. The same pattern was found regarding other fractures (any, upper arm, ankle, and major osteoporotic fracture) but not for wrist fracture. Subset analyses revealed that in men, the risk of hip fracture was only increased in those with T2DM‐I, but in women, both the diagnosis of T2DM‐O and T2DM‐I were related to increased hip fracture risk. In conclusion, the risk of fractures differs substantially among patients with T2DM and an increased risk of hip fracture was primarily found in insulin‐treated patients, whereas the risk of non‐skeletal fall injury was consistently increased in T2DM with any diabetes medication. © 2016 American Society for Bone and Mineral Research

    Progeny selection for enhanced forest growth alters soil communities and processes

    Get PDF
    Genetic enhancement of tree species is integral to global forest management practices with mass propagation of enhanced plant material being used to reforest whole landscapes. It is unclear, however, how genetic enhancement of basic traits such as tree growth may influence the function of life supporting soil ecosystems. We studied the potential cascading effects of genetic increases in growth of Norway spruce (Picea abies) on a range of soil chemical and biological properties. Because this species is a prime candidate for the genetic enhancement of boreal forest landscapes and it has been introduced around the world, its impacts on soil microbiomes are likely of importance both locally and globally. In a 40-year common garden, we assessed how genetic increases in growth generated through controlled crossing of high-quality "plus" trees from across the central boreal zone of Sweden influenced a range of soil properties beneath the canopies. Properties included pH, carbon, nitrogen, nitrate, ammonium, phosphate, respiration rate, and the composition of microbial communities assessed via phospholipid fatty acids (PLFAs). We found that Norway spruce family significantly affected each of the seven chemical properties assessed, with differences of up to 140% among families, and that three of the seven were significantly correlated with mean family growth rate. We also found that fungal PLFAs varied significantly across Norway spruce families, but these differences were not strongly related to mean family growth rate. This study, representing just one cycle of selective breeding, suggests that genetic increases in tree growth rates may also be inadvertently altering soil communities and ecosystem services. Such alterations across forest landscapes may have unexpected implications for the function of forest ecosystems (i.e., nutrient cycling) as well as processes of global significance (i.e., carbon sequestration)

    An Efficient Computational Approach to a Class of Minmax Optimal Control Problems with Applications

    Get PDF
    In this paper, an efficient computation method is developed for solving a general class of minmax optimal control problems, where the minimum deviation from the violation of the continuous state inequality constraints is maximized. The constraint transcription method is used to construct a smooth approximate function for each of the continuous state inequality constraints. We then obtain an approximate optimal control problem with the integral of the summation of these smooth approximate functions as its cost function. A necessary condition and a sufficient condition are derived showing the relationship between the original problem and the smooth approximate problem. We then construct a violation function from the solution of the smooth approximate optimal control problem and the original continuous state inequality constraints in such a way that the optimal control of the minmax problem is equivalent to the largest root of the violation function, and hence can be solved by the bisection search method. The control parametrization and a time scaling transform are applied to these optimal control problems. We then consider two practical problems: the obstacle avoidance optimal control problem and the abort landing of an aircraft in a windshear downburst
    • 

    corecore