4,359 research outputs found
The Kato square root problem on vector bundles with generalised bounded geometry
We consider smooth, complete Riemannian manifolds which are exponentially
locally doubling. Under a uniform Ricci curvature bound and a uniform lower
bound on injectivity radius, we prove a Kato square root estimate for certain
coercive operators over the bundle of finite rank tensors. These results are
obtained as a special case of similar estimates on smooth vector bundles
satisfying a criterion which we call generalised bounded geometry. We prove
this by establishing quadratic estimates for perturbations of Dirac type
operators on such bundles under an appropriate set of assumptions.Comment: Slight technical modification of the notion of "GBG constant section"
on page 7, and a few technical modifications to Proposition 8.4, 8.6, 8.
The effect on teaching problem-solving skills for students with learning disabilities using the connected mathematics project
The purpose of this study was to examine the effectiveness of the Connected Mathematics Project (CMP) for seventh-graders with learning disabilities in acquiring math problem-solving skills in the areas of comparisons, percents, ratios, and rates. A total of 10 middle school students in a small rural district participated in the study. The CMP unit, Comparing and Scaling, was taught to those students for six weeks. Four pretests and post-tests were given to evaluate their performance. A survey was provided to investigate their satisfaction with their learning experience in the CMP. All students gained scores, with an average increase of 55.72%. Most students had positive responses to the survey. The results show that the CMP is an effective approach for students with learning disabilities to learn problem-solving skills in mathematics
The Physics of Wind-Fed Accretion
We provide a brief review of the physical processes behind the radiative
driving of the winds of OB stars and the Bondi-Hoyle-Lyttleton capture and
accretion of a fraction of the stellar wind by a compact object, typically a
neutron star, in detached high-mass X-ray binaries (HMXBs). In addition, we
describe a program to develop global models of the radiatively-driven
photoionized winds and accretion flows of HMXBs, with particular attention to
the prototypical system Vela X-1. The models combine XSTAR photoionization
calculations, HULLAC emission models appropriate to X-ray photoionized plasmas,
improved models of the radiative driving of photoionized winds, FLASH
time-dependent adaptive-mesh hydrodynamics calculations, and Monte Carlo
radiation transport. We present two- and three-dimensional maps of the density,
temperature, velocity, ionization parameter, and emissivity distributions of
representative X-ray emission lines, as well as synthetic global Monte Carlo
X-ray spectra. Such models help to better constrain the properties of the winds
of HMXBs, which bear on such fundamental questions as the long-term evolution
of these binaries and the chemical enrichment of the interstellar medium.Comment: 9 pages including 5 color encapsulated postscript figures; accepted
for inclusion in the proceedings of "Cool Discs, Hot Flows: The Varying Faces
of Accreting Compact Objects," ed. M. Axelsson (New York: AIP); minor
revision which addresses the referee's comments; added Fig. 1 and removed
Fig. 3 and the associated tex
The Effect of a Needs-Related Caries Preventive Program in Children and Young Adults – Results after 20 Years
The risk for caries development in children varies significantly for different age groups, individuals, teeth, and surfaces. Thus from a cost-effectiveness point of view, caries preventive measures must be integrated and based on predicted risk from age group down to individual tooth surfaces. Based on this philosophy and experiences from continuously ongoing research on evaluating and reevaluating separate and integrated caries preventive measures, as well as methods for prediction of caries risk, a needs-related caries preventive program was introduced for all 0–19-year-olds in the county of Värmland, Sweden, in 1979. The goals for the subjects following the program from birth to the age of 19 years were
On stoichiometry and intermixing at the spinel/perovskite interface in CoFe2O4/BaTiO3 thin films
The performance of complex oxide heterostructures depends primarily on the interfacial coupling of the two component structures. This interface character inherently varies with the synthesis method and conditions used since even small composition variations can alter the electronic, ferroelectric, or magnetic functional properties of the system. The focus of this article is placed on the interface character of a pulsed laser deposited CoFe2O4/BaTiO3 thin film. Using a range of state-of-the-art transmission electron microscopy methodologies, the roles of substrate morphology, interface stoichiometry, and cation intermixing are determined on the atomic level. The results reveal a surprisingly uneven BaTiO3 substrate surface formed after the film deposition and Fe atom incorporation in the top few monolayers inside the unit cell of the BaTiO3 crystal. Towards the CoFe2O4 side, a disordered region extending several nanometers from the interface was revealed and both Ba and Ti from the substrate were found to diffuse into the spinel layer. The analysis also shows that within this somehow incompatible composite interface, a different phase is formed corresponding to the compound Ba2Fe3Ti5O15, which belongs to the ilmenite crystal structure of FeTiO3 type. The results suggest a chemical activity between these two oxides, which could lead to the synthesis of complex engineered interfaces
Extremely narrow spectrum of GRB110920A: further evidence for localised, subphotospheric dissipation
Much evidence points towards that the photosphere in the relativistic outflow
in GRBs plays an important role in shaping the observed MeV spectrum. However,
it is unclear whether the spectrum is fully produced by the photosphere or
whether a substantial part of the spectrum is added by processes far above the
photosphere. Here we make a detailed study of the ray emission from
single pulse GRB110920A which has a spectrum that becomes extremely narrow
towards the end of the burst. We show that the emission can be interpreted as
Comptonisation of thermal photons by cold electrons in an unmagnetised outflow
at an optical depth of . The electrons receive their energy by a
local dissipation occurring close to the saturation radius. The main spectral
component of GRB110920A and its evolution is thus, in this interpretation,
fully explained by the emission from the photosphere including localised
dissipation at high optical depths.Comment: 14 pages, 11 figures, accepted to MNRA
Parallel Unsmoothed Aggregation Algebraic Multigrid Algorithms on GPUs
We design and implement a parallel algebraic multigrid method for isotropic
graph Laplacian problems on multicore Graphical Processing Units (GPUs). The
proposed AMG method is based on the aggregation framework. The setup phase of
the algorithm uses a parallel maximal independent set algorithm in forming
aggregates and the resulting coarse level hierarchy is then used in a K-cycle
iteration solve phase with a -Jacobi smoother. Numerical tests of a
parallel implementation of the method for graphics processors are presented to
demonstrate its effectiveness.Comment: 18 pages, 3 figure
- …