543 research outputs found

    Statistical Model Checking : An Overview

    Full text link
    Quantitative properties of stochastic systems are usually specified in logics that allow one to compare the measure of executions satisfying certain temporal properties with thresholds. The model checking problem for stochastic systems with respect to such logics is typically solved by a numerical approach that iteratively computes (or approximates) the exact measure of paths satisfying relevant subformulas; the algorithms themselves depend on the class of systems being analyzed as well as the logic used for specifying the properties. Another approach to solve the model checking problem is to \emph{simulate} the system for finitely many runs, and use \emph{hypothesis testing} to infer whether the samples provide a \emph{statistical} evidence for the satisfaction or violation of the specification. In this short paper, we survey the statistical approach, and outline its main advantages in terms of efficiency, uniformity, and simplicity.Comment: non

    Homotopy Bisimilarity for Higher-Dimensional Automata

    Get PDF
    We introduce a new category of higher-dimensional automata in which the morphisms are functional homotopy simulations, i.e. functional simulations up to concurrency of independent events. For this, we use unfoldings of higher-dimensional automata into higher-dimensional trees. Using a notion of open maps in this category, we define homotopy bisimilarity. We show that homotopy bisimilarity is equivalent to a straight-forward generalization of standard bisimilarity to higher dimensions, and that it is finer than split bisimilarity and incomparable with history-preserving bisimilarity.Comment: Heavily revised version of arXiv:1209.492

    History-Preserving Bisimilarity for Higher-Dimensional Automata via Open Maps

    Get PDF
    We show that history-preserving bisimilarity for higher-dimensional automata has a simple characterization directly in terms of higher-dimensional transitions. This implies that it is decidable for finite higher-dimensional automata. To arrive at our characterization, we apply the open-maps framework of Joyal, Nielsen and Winskel in the category of unfoldings of precubical sets.Comment: Minor updates in accordance with reviewer comments. Submitted to MFPS 201

    On the Expressiveness of Joining

    Get PDF
    The expressiveness of communication primitives has been explored in a common framework based on the pi-calculus by considering four features: synchronism (asynchronous vs synchronous), arity (monadic vs polyadic data), communication medium (shared dataspaces vs channel-based), and pattern-matching (binding to a name vs testing name equality vs intensionality). Here another dimension coordination is considered that accounts for the number of processes required for an interaction to occur. Coordination generalises binary languages such as pi-calculus to joining languages that combine inputs such as the Join Calculus and general rendezvous calculus. By means of possibility/impossibility of encodings, this paper shows coordination is unrelated to the other features. That is, joining languages are more expressive than binary languages, and no combination of the other features can encode a joining language into a binary language. Further, joining is not able to encode any of the other features unless they could be encoded otherwise.Comment: In Proceedings ICE 2015, arXiv:1508.04595. arXiv admin note: substantial text overlap with arXiv:1408.145

    Dependability Analysis of Control Systems using SystemC and Statistical Model Checking

    Get PDF
    Stochastic Petri nets are commonly used for modeling distributed systems in order to study their performance and dependability. This paper proposes a realization of stochastic Petri nets in SystemC for modeling large embedded control systems. Then statistical model checking is used to analyze the dependability of the constructed model. Our verification framework allows users to express a wide range of useful properties to be verified which is illustrated through a case study

    Formal Verification of Probabilistic SystemC Models with Statistical Model Checking

    Full text link
    Transaction-level modeling with SystemC has been very successful in describing the behavior of embedded systems by providing high-level executable models, in which many of them have inherent probabilistic behaviors, e.g., random data and unreliable components. It thus is crucial to have both quantitative and qualitative analysis of the probabilities of system properties. Such analysis can be conducted by constructing a formal model of the system under verification and using Probabilistic Model Checking (PMC). However, this method is infeasible for large systems, due to the state space explosion. In this article, we demonstrate the successful use of Statistical Model Checking (SMC) to carry out such analysis directly from large SystemC models and allow designers to express a wide range of useful properties. The first contribution of this work is a framework to verify properties expressed in Bounded Linear Temporal Logic (BLTL) for SystemC models with both timed and probabilistic characteristics. Second, the framework allows users to expose a rich set of user-code primitives as atomic propositions in BLTL. Moreover, users can define their own fine-grained time resolution rather than the boundary of clock cycles in the SystemC simulation. The third contribution is an implementation of a statistical model checker. It contains an automatic monitor generation for producing execution traces of the model-under-verification (MUV), the mechanism for automatically instrumenting the MUV, and the interaction with statistical model checking algorithms.Comment: Journal of Software: Evolution and Process. Wiley, 2017. arXiv admin note: substantial text overlap with arXiv:1507.0818
    • …
    corecore