58 research outputs found

    Introductory Chapter: From the Cradle to the Grave for the Nuclear Fuel Cycle

    Get PDF

    Removal of Methylene Blue Dyes from Aqueous System Using Composite Polymeric-Apatite Resins

    Get PDF
    Removal of cationic dyes from industrial effluents is still a big and challenging subject in the field of environmental purification. Millions of tons of cationic dyes are consumed by the textile, rubber, paper, and plastic industries. These dyes have thousands of different chemical structures. Most of them have special properties, such as high hydrophilicity and stability to light or heat. Adsorption is commonly used as a technique for removing dyes. Removal of cationic dyes by adsorption is a promising approach because of its low performance cost and easy technical access. The amount adsorbed of the dye onto the polymeric resin is studied with time for estimating the adsorption mechanism. The adsorption of dye with time shows that mixing period of 10 min is optimum for attaining equilibrium with respect to R1 and R2, while attaining equilibrium with R3 takes 60 min. This findings represent a rapid kinetic for adsorption of MB, particularly R1, on the prepared resins. Different kinetic models were applied on the obtained results and the kinetic parameters were determined. The kinetic models correlate the amount adsorbed of dye with time. The values of calculated adsorption capacity qe and the linear regression coefficient clarify that the studied kinetic model could not fit with the experimental results for adsorption of MB onto R1, R2, and R3. The results of the studied kinetic model clarify that the experimental results for adsorption of MB onto R1, R2, and R3 could be described by kinetic model supporting chemical adsorption. The sorption of MB could be favorably described by the pseudo-second-order kinetic model onto the composite resins. This finding refers to the participation of chemical adsorption within the adsorption mechanism for MB onto R1, R2, and R3

    Physicochemical characterization of natural hydroxyapatite/ cellulose composite

    Get PDF
    The natural hydroxyapatite (HAp, activated at different temperatures)/ cellulose composites have been prepared by usingsonication method to improve the physical properties of the cellulose fibre. The molecular level interaction and the physicalproperties of the hydroxyapatite/cellulose composite are examined using FTIR, X-ray diffraction, SEM, and thermalanalysis. The absorption bands at around 660 cm1 confirm the O–P–O bending vibration in the HAp/cellulose composites.There is a difference in the d-spacing of the HAp /cellulose composite, indicating that the HAp is reactive towards cellulose.SEM indicates that HAp could penetrate the cellulose network structure to form particles that is helpful to improve themechanical properties of the cellulose. The porosities of HAp/cellulose composites decrease, and their compressive strengthincrease as compared to those of cellulose. Thermogravimetric analysis confirms the highest thermal stability of theprepared composites

    Review of the Recent Advances in Electrospun Nanofibers Applications in Water Purification

    Get PDF
    Recently, nanofibers have come to be considered one of the sustainable routes with enormous applicability in different fields, such as wastewater treatment. Electrospun nanofibers can be fabricated from various materials, such as synthetic and natural polymers, and contribute to the synthesis of novel nanomaterials and nanocomposites. Therefore, they have promising properties, such as an interconnected porous structure, light weight, high porosity, and large surface area, and are easily modified with other polymeric materials or nanomaterials to enhance their suitability for specific applications. As such, this review surveys recent progress made in the use of electrospun nanofibers to purify polluted water, wherein the distinctive characteristics of this type of nanofiber are essential when using them to remove organic and inorganic pollutants from wastewater, as well as for oil/water (O/W) separation

    Recent Progress and Potential Biomedical Applications of Electrospun Nanofibers in Regeneration of Tissues and Organs

    Get PDF
    Electrospun techniques are promising and flexible technologies to fabricate ultrafine fiber/nanofiber materials from diverse materials with unique characteristics under optimum conditions. These fabricated fibers/nanofibers via electrospinning can be easily assembled into several shapes of three-dimensional (3D) structures and can be combined with other nanomaterials. Therefore, electrospun nanofibers, with their structural and functional advantages, have gained considerable attention from scientific communities as suitable candidates in biomedical fields, such as the regeneration of tissues and organs, where they can mimic the network structure of collagen fiber in its natural extracellular matrix(es). Due to these special features, electrospinning has been revolutionized as a successful technique to fabricate such nanomaterials from polymer media. Therefore, this review reports on recent progress in electrospun nanofibers and their applications in various biomedical fields, such as bone cell proliferation, nerve regeneration, and vascular tissue, and skin tissue, engineering. The functionalization of the fabricated electrospun nanofibers with different materials furnishes them with promising properties to enhance their employment in various fields of biomedical applications. Finally, we highlight the challenges and outlooks to improve and enhance the application of electrospun nanofibers in these applications

    Marginal and Internal Crown Fit Evaluation of CAD/CAM versus Press-Laboratory Lithium Disilicate Crown

    Get PDF
    This study aims to evaluate the marginal gap and internal adaptation of lithium disilicate crowns fabricated by conventional press-dental laboratory and CAD/CAM systems. The size of the marginal and internal gaps of crowns is fabricated with the two techniques in the current study; the research will be performed in an effort to improve clinical outcomes. Tooth #14 was prepared per standard specification to receive the lithium disilicate crowns. Sixty Type IV gypsum dies tooth #14 were duplicated and divided into three groups (n=30). The lithium disilicate CAD/CAM system (Group 1) was fabricated with the E4D CAD/CAM system according to manufacturer's instructions. For press-dental laboratory made crowns, impressions were taken on the region area with two-step impression techniques with light and putty consistency VPS. Impressions were sent to two independent dental laboratories (Groups 2 and 3) for fabricating the monolithic press lithium disilicate crown. Tooth #14 was optically scanned and lithium disilicate blocks were used to fabricate crowns using CAD/CAM technique. Polyvinyl siloxane impressions of the prepared teeth were made and monolithic pressed lithium disilicate crowns were fabricated. The marginal gap was measured using optical microscope at 160× magnification (Keyence VHX-5000, Japan) and internal fit of the crowns was assessed by the silicone replica technique. Four sections of each replica were obtained, and each section was evaluated at four points: marginal gap (MG), axial wall (AW), axio-occlusal edge (AO) and Centro-occlusal wall (CO), using an image analyzing software. Statistical analysis was performed using ANOVA and chi-squared test. Study design: Experimental. Setting of study: University of Palestine and Laser Specialized center For Esthetic Dentistry

    Eco-friendly synthesized nanoparticles as antimicrobial agents: an updated review

    Get PDF
    Green synthesis of NPs has gained extensive acceptance as they are reliable, eco-friendly, sustainable, and stable. Chemically synthesized NPs cause lung inflammation, heart problems, liver dysfunction, immune suppression, organ accumulation, and altered metabolism, leading to organ-specific toxicity. NPs synthesized from plants and microbes are biologically safe and cost-effective. These microbes and plant sources can consume and accumulate inorganic metal ions from their adjacent niches, thus synthesizing extracellular and intracellular NPs. These inherent characteristics of biological cells to process and modify inorganic metal ions into NPs have helped explore an area of biochemical analysis. Biological entities or their extracts used in NPs include algae, bacteria, fungi, actinomycetes, viruses, yeasts, and plants, with varying capabilities through the bioreduction of metallic NPs. These biosynthesized NPs have a wide range of pharmaceutical applications, such as tissue engineering, detection of pathogens or proteins, antimicrobial agents, anticancer mediators, vehicles for drug delivery, formulations for functional foods, and identification of pathogens, which can contribute to translational research in medical applications. NPs have various applications in the food and drug packaging industry, agriculture, and environmental remediation
    • …
    corecore