376 research outputs found

    Determination of Tobramycin in M<sub>9</sub> Medium by LC-MS/MS: Signal Enhancement by Trichloroacetic Acid

    Get PDF
    It is well known that ion-pairing reagents cause ion suppression in LC-MS/MS methods. Here, we report that trichloroacetic acid increases the MS signal of tobramycin. To support studies of an in vitro pharmacokinetic/pharmacodynamic simulator for bacterial biofilms, an LC-MS/MS method for determination of tobramycin in M9 media was developed. Aliquots of 25 μL M9 media samples were mixed with the internal standard (IS) tobramycin-d5 (5 µg/mL, 25 µL) and 200 µL 2.5% trichloroacetic acid. The mixture (5 µL) was directly injected onto a PFP column (2.0 × 50 mm, 3 µm) eluted with water containing 20 mM ammonium formate and 0.14% trifluoroacetic acid and acetonitrile containing 0.1% trifluoroacetic acid in a gradient mode. ESI+ and MRM with ion m/z 468 → 324 for tobramycin and m/z 473 → 327 for the IS were used for quantification. The calibration curve concentration range was 50–25000 ng/mL. Matrix effect from M9 media was not significant when compared with injection solvents, but signal enhancement by trichloroacetic acid was significant (∼3 fold). The method is simple, fast, and reliable. Using the method, the in vitro PK/PD model was tested with one bolus dose of tobramycin

    Diffusion of new antiretroviral drugs in CSF

    Get PDF

    Determination of unbound piperaquine in human plasma by ultra-high performance liquid chromatography tandem mass spectrometry

    Get PDF
    Piperaquine (PQ) is an antimalarial drug that is highly protein-bound. Variation in plasma protein contents may affect the pharmacokinetic (PK) exposure of unbound drug, leading to alteration of clinical outcomes. All published methods for determination of PQ in human plasma measure the total PQ including both bound and unbound PQ to plasma proteins. There is no published method for unbound PQ determination. Here we report an ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method for determination of PQ in human plasma filtrate prepared by filtering human plasma through Millipore Microcon® centrifugal filters (10k NMWL). The filter cup had to be treated with 5% benzalkonium chloride to reduce non-specific binding to the filter devices before filtration of plasma samples. Multiple reactions monitoring (MRM) of the ion pairs m/z 535/288 for PQ and m/z 541/294 for the internal standard (IS) was selected for quantification. When electrospray ionization (ESI+) was used, paradoxical matrix effect was observed despite the structure similarity of the deuterated IS: Ion suppression for PQ versus ion enhancement for the PQ-d6, even though they were closely eluted: 0.62 min versus 0.61 min. Separation was achieved on Evo C18 column (50 × 2.1 mm, 1.7 μm, Phenomenex Inc.) eluted with 10 mM NH4OH and MeCN. When atmospheric pressure chemical ionization in positive mode (APCI+) was used for ion source, matrix effect diminished. Separation was achieved on a PFP column (30 × 2.1 mm, 1.7 μm, Waters, Corp.) eluted with aqueous 20 mM ammonium formate 0.14% trifluoroacetic acid (A) and methanol-acetonitrile (4:1, v/v) containing 0.1% trifluoroacetic acid (B) at 0.8 mL/min flow rate in a gradient mode: 30-30-80-80-30-30%B (0-0.1-1.0-1.40-1.41-1.50 min). The retention time was 0.67 min for both PQ and the IS. The method was validated with a linear calibration range from 20 to 5,000 pg/mL and applied to clinical samples

    Quantification of N, N’ N’’-triethylenethiophosphoramide, N, N’ N’’-triethylenephosphoramide, cyclophosphamide, and 4-hydroxy-cyclophosphamide in microvolume human plasma to support neonatal and pediatric drug studies

    Get PDF
    N, N' N"-triethylenethiophosphoramide (thiotepa) and cyclophosphamide (CP) are alkylating agents used for a variety of malignant and non-malignant disorders. Both drugs are metabolized by cytochrome P450 enzymes to form active metabolites. To support pharmacokinetic studies of thiotepa and CP in children, we sought to develop assays to determine parent drug and metabolite concentration in small volume plasma samples. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used for assay development. CP metabolite 4-hydroxycyclophosphamide (4OHCP) was converted to the more stable semicarbazone derivative (4OHCP-SCZ) for quantitation. Samples (10 μL) were extracted by solid-phase extraction and injected onto the LC-MS/MS system equipped with a pentafluorophenyl reverse phase column (2.1 × 50 mm, 2.7 μm). Electrospray ionization in positive mode was used for detection. Multiple reaction monitoring of the precursor-to-product ion transitions m/z 190→147 for thiotepa, 174→131 for tepa, 261→233 for CP, and 334→221 for 4OHCP-SCZ was selected for quantification. The ion transitions m/z 202→155 for thiotepa-d12, 186→139 for tepa-d12, 267→237 for CP-d4, and 340→114 for 4OHCP-d4-SCZ were selected for the internal standard (IS) corresponding to each analyte. The less abundant IS ions from 37Cl were used for CP-d4 and 4OHCP-d4-SCZ to overcome the cross-talk interference from the analytes. Under optimized conditions, retention times were 0.67 min for tepa and its IS, 2.50 min for thiotepa and its IS, 2.52 min for 4OHCP-SCZ and its IS, and 2.86 min for CP and its IS. Total run time was 5 min per sample. The calibration ranges were 2.5-2,000ng/mL for thiotepa and tepa, 20-10,000ng/mL for CP and 20-5,000 ng/mL for 4OHCP; Dilution integrity for samples above the calibration range was validated with 10-fold dilution for thiotepa/tepa and 20-fold dilution for CP/4OHCP. Recoveries ranged from 86.3-93.4% for thiotepa, 86.3-89.0% for tepa, 90.2-107% for CP, and 99.3-115% for 4OHCP-SCZ. The IS normalized matrix effect was within (100±7) % for all 4 analytes. Plasma samples at room temperature were stable for at least 60 hours for thiotepa, 6 days for tepa, and 24 hours for CP and 4OHCP-SCZ. Plasma samples for thiotepa/tepa were stable after 4 freeze-thaw cycles, and for CP/4OHCP-SCZ were stable after 3 freeze-thaw cycles. The assays were validated and applied to clinical studies requiring small sample volumes
    corecore