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Abstract

This secondary analysis explored changes in protein-unbound concentrations of lopinavir and 

amprenavir when co-administered in HIV-infected subjects. Total and unbound pharmacokinetic 

parameters were calculated and compared between subjects receiving each agent alone, and co-

administration. When co-administered, unbound and total concentrations decrease. Co-

administration significantly increased lopinavir unbound clearance, while significant changes in 

fraction unbound (fu) were not detected. For amprenavir, significant increases in fu and unbound 

clearance occurred with co-administration. This demonstrates the complex nature of drug-drug 

interactions between highly protein-bound, CYP-metabolized drugs, and the need to measure 

unbound concentrations in disease states like hepatitis C, where such agents are co-administered.
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Introduction

HIV protease inhibitors (PIs) are highly bound to proteins such as albumin and alpha-1-acid 

glycoprotein. They have complex metabolism and transport profiles, and high potential for 

drug-drug interactions. For example, lopinavir (LPV) is a high-extraction drug (e.g. hepatic 

clearance is the major route of drug elimination), but it becomes low-extraction when co-

administered with ritonavir due to inhibition of CYP3A-mediated clearance.1 The ester pro-

drug of amprenavir (APV), fosamprenavir (FPV), administered to improve oral absorption, 

tolerability and reduce pill burden, may be used with or without ritonavir. In either situation, 

FPV remains a high-extraction drug.2 As previously shown, when FPV or APV is co-

administered with lopinavir/ritonavir (LPV/r), decreases in total LPV area-under-the-

concentration-time-curve (AUC) from 24-48% and decreases in total APV AUC from 

53-67% are observed.3-5

The significance of changes in plasma protein binding due to drug-drug interactions is 

widely debated in the pharmacokinetics (PK) literature.6,7 According to PK theory, only 

drugs that are high-extraction and administered intravenously, or those administered orally 

that are both high-extraction and non-hepatically eliminated should exhibit changes in 

unbound drug concentrations as a result of displacement of one drug by another on plasma 

proteins, i.e. due to a change in fraction unbound (fu). Changes in the intrinsic clearance of 

unbound drug, whether due to changes in metabolism or transport, may affect the unbound 

concentrations of orally administered, low-extraction drugs or orally administered high-

extraction drugs eliminated by hepatic mechanisms, such as LPV and APV, respectively.

Here, we expand upon previously reported decreases in total drug concentrations, with the 

observed decreases in unbound concentrations due to a drug-drug interaction between FPV 

and LPV when co-administered with ritonavir in HIV-infected subjects in AIDS Clinical 

Trials Group (ACTG) protocol A5143 and its pharmacology substudy, A5147s.

Methods

Study Protocol and Sub-study Inclusion Criteria

Details regarding A5143, A5147s, and main results have been published.3,8 Briefly, 

treatment-experienced HIV-1 infected subjects were randomized 1:1:2 into 3 arms to 

compare the efficacy and PK of lopinavir/ritonavir 400/100 mg twice daily (LPV/r; Arm A), 

fosamprenavir/ritonavir 700/100 mg twice daily (FPV/r; Arm B), and the combination of 

fosamprenavir/lopinavir/ritonavir 700/400/100 mg twice daily (LPV/FPV/r; Arm C), all 

administered with tenofovir and 1-2 additional nucleoside agents. A planned PK substudy, 

A5147s, enrolled 8, 8, and 17 evaluable subjects in Arms A (LPV/r), B (FPV/r), and C 

(LPV/FPV/r), respectively; PK data from 10 additional subjects enrolled in A5143 became 

available after publication of interim A5147s analysis. Samples collected from these 43 

subjects underwent analysis for unbound concentrations of LPV and APV. Fifteen subjects 

were further excluded from this analysis due to missing concentrations at pre-specified 

sampling points for PK parameter calculations3; 9 in the LPV/FPV/r arm, 3 in the LPV/r 

arm, and 3 in the FPV/r arm. In total, twenty-eight subjects (9, 9, and 10 in Arms A, B, and 

C, respectively) had complete and evaluable PK profiles for unbound LPV and/or APV. The 
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transfer of de-identified PK and demographic data from the ACTG to the University of 

North Carolina at Chapel Hill (UNC-CH) was approved by the ACTG and the UNC-CH 

Biomedical Institutional Review Board.

Unbound Lopinavir and Amprenavir Concentrations

The analytical methods for total drug concentrations have been previously reported.3 

Unbound concentrations of LPV and APV were determined by equilibrium dialysis using 

radiolabeled standards. The system was comprised of a Harvard apparatus multi-equilibrium 

dialyzer with Macro Teflon dialysis cells (1ml) and variable speed drive unit, a Beckman 

LS3801 Liquid Scintillation Counter, and Spectra/Por®RC membranes, using Dulbecco’s 

phosphate-buffered saline as the dialysis buffer and 900 μL of sample plasma. Equilibrium 

time was 4-5 hours. For each drug, five samples of 4 different concentrations (LPV 0.0, 0.5, 

6, and 12μg/ml; APV 0.0, 0.2, 2, and 8μg/ml) were analyzed on 5 separate days. The inter-

day percent coefficient of variation (%CV) for LPV ranged from 9.9 to 12.1%. The average 

intra-day %CV for LPV ranged from 6.8% to 8.6%. The inter-day %CV for APV ranged 

from 6.4 to 9.5%. The average intra-day %CV for APV ranged from 1.8% to 6.6%. 

Recovery was 96.2% and 92.5% for LPV and APV, respectively.

Pharmacokinetic and Statistical Analyses

The area-under-the-concentration-time curve for the dosing interval (AUCtau) was 

calculated in Phoenix Win Nonlin 6.3 (Pharsight, a Certara company, St. Louis, MO), using 

the linear-up/log-down method for both total and unbound concentrations. Apparent oral 

clearance at steady state (CL/Fss) for total concentrations was calculated as dose/AUCtau. 

Unbound clearance (CL/Fss,u) was calculated for each subject by dividing estimated total 

CL/Fss by the median fraction unbound (fu) over the dosing interval for LPV and APV.9

While the study enrolled subjects with prior exposure to either LPV or APV, but not both, 

comparisons were restricted to subjects who were naïve to the drug under evaluation and 

thus eligible for randomization to either of the arms being compared (e.g. comparisons of 

LPV PK were limited to subjects who were LPV-naïve at randomization). Statistical 

comparisons of PK parameters were carried out on the natural logarithmic scale. Geometric 

mean ratio (GMR) estimates were calculated by exponentiation of the difference in means of 

log-transformed PK measurements, and 95% Wald-type confidence intervals were computed 

using unpooled variance estimates and Satterthwaite’s approximate degrees of freedom. 

Exact Wilcoxon rank-sum tests were performed. A GMR below 1 indicates a lower 

geometric mean for APV/LPV combined (Arm C). Baseline demographics between subjects 

who did and did not have available unbound concentrations were compared using 

nonparametric tests (continuous data: Wilcoxon rank-sum test; categorical data: Fisher’s 

exact test). Statistical analyses were conducted using a two-sided statistical significance 

level of 0.05, in SAS 9.3 (SAS Institute Inc., Cary, NC) or R version 3.1.2 (www.R-

project.org). Comparisons were carried out on both total and unbound parameters; results for 

the total drug parameters presented here are not expected to provide the same results as 

those previously published, as this analysis is comprised of a set of subjects that does not 

completely overlap with the previous analysis set.3
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Results

Subject Demographics

The mean and standard deviation (mean±SD) age of the 28 subjects with evaluable unbound 

and total PK was 44±8 years. All but two subjects were male, and 50% were Caucasian non-

Hispanic. The mean±SD log10 copies/mL of viral load at enrollment was 4.61±0.66, with 

CD4+ cell counts of 211±167 cells/mm3. No subjects in Arm A or Arm B had previous 

exposure to the randomized protease inhibitor; in Arm C, 9/10 subjects were naïve to both 

drugs, with 1 subject having previous LPV exposure. No significant differences in age, sex, 

race, baseline HIV RNA concentration, baseline CD4+ count, or previous drug exposure 

were observed between the 43 subjects with available total drug PK and the 28 with total 

and unbound PK (all p-values >0.2).

Lopinavir

The median AUCtau, 12-hr concentrations (C12hr), and clearance values of total and 

unbound LPV when administered as LPV/r and LPV/APV/r (Arm A and C, respectively) 

and GMR 95% confidence intervals and p-value for their comparisons are presented in 

Table 1; concentration-time plots of total and unbound LPV, by arm, are shown in Figure 

1a. Total LPV AUCtau and C12hr were significantly lower when combined with FPV (Arm 

C) than without (Arm A; GMR for AUCtau of 0.63 (95% CI: 0.46-0.85), p = 0.019, and 

GMR of 0.47 (0.28-0.8), p = 0.019 for C12hr). This was also true for the unbound LPV PK 

parameters (GMR for AUCtau of 0.49 (0.33-0.72), p < 0.001 and 0.35 (0.18-0.65), p = 0.008 

for C12hr). Total LPV apparent oral clearance at steady state (CL/Fss) was not significantly 

different between arms (GMR of 1.34 (0.88-2.04), p = 0.14), although the median CL/F 

during co-administration (Arm C) was approximately 45% higher compared to single 

administration (Arm A). To assess potential causes of this drug-drug interaction, the 

distribution of the fraction unbound (fu) within a subject was compared across arms; for 

LPV, the fu was higher, but not significantly different between LPV alone and LPV/APV 

co-administration (median fu of 0.011 vs 0.0088, p = 0.077). However, the LPV apparent 

oral clearance (CL/Fss,u) for unbound drug concentration was significantly higher when co-

administered with APV (671 L/hr) compared to being used alone (428 L/hr, p = 0.004).

Amprenavir

The median AUCtau, 12-hr concentrations (C12hr), and clearance values of total and 

unbound APV when administered as FPV/r and LPV/APV/r (Arm B and C, respectively), 

and GMR analyses for their comparison are presented in Table 1; concentration-time plots 

of total and unbound APV, by arm, are shown in Figure 1b. As previously reported in the 

A5147s analysis, APV PK parameters were significantly lower in the LPV/FPV/r regimen 

(Arm C) than in the FPV/r regimen (Arm B; (GMR for AUCtau of 0.45 (95% CI: 0.33-0.62), 

p < 0.001; GMR for C12 of 0.41 (0.26-0.65), p = 0.002; GMR for CL/Fss of 2.11 

(1.53-2.90), p = 0.002). This was also true for the unbound APV PK parameters (GMR for 

AUCtau of 0.62 (0.39-0.97), p = 0.035 and 0.51 (0.28-0.94), p = 0.035 for C12hr). Here, for 

APV, the fu and the CL/Fss,u were both significantly higher when dosed with LPV, with a 

median fu of 0.067 and 0.079, p = 0.010 and a median CL/Fss,u of 231 and 475 L/hr, p = 

0.037 for Arm B compared to Arm C.
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Conclusions

These results illustrate the complex nature of drug-drug interactions between HIV PIs. For 

LPV, CL/Fss,u was significantly higher in the presence of APV, while a significant 

difference in fu was not demonstrated, suggesting induction of hepatic metabolism or 

alteration of transport mechanisms. PIs are substrates for several drug transporters,10 which 

may be altered and increase biliary elimination, increase efflux from intestinal cells, or 

decrease efflux in hepatic cells with resultant increased metabolism. Potentially, co-

administration of multiple PIs may saturate transport mechanisms, resulting in altered 

intrinsic clearance.10 For APV, when combined with LPV, alteration in CL/Fss,u was also 

observed, as well as a significantly higher fu. These observed changes CL/Fss,u are 

consistent with pharmacokinetic theory, which predicts changes in unbound concentrations 

of these orally administered high-extraction drugs when metabolism or transport are altered. 

The significant difference in fu for APV is not consistent with pharmacokinetic theory, but is 

consistent with results from ANRS 104, where APV was administered with LPV/r, rather 

than FPV here, but only unbound APV was measured.5 Other potential mechanisms that 

could explain these APV changes, such as altered absorption or a physicochemical 

interaction in the gut are less likely, given that dose separation and increased ritonavir 

dosing still results in significantly lower LPV and APV concentrations when co-

administered.11 The complex interactions between co-administered PI that affect disposition 

may partially explain this phenomenon. Despite decreased unbound concentrations, 

however, in this and other reports, IQ ratios demonstrate unbound concentrations above the 

minimum needed for virologic effect and at least partial virologic efficacy was 

achieved.4,5,12-14

Although dual PI treatment within the context of HIV infection is not a recommended 

treatment strategy, the dawn of hepatitis C virus (HCV) PIs, which share metabolism and 

transporter pathways with HIV PIs, introduce similar conundrums when treating HIV/HCV 

co-infected patients.15 Ritonavir, which has complex effects on CYP450 enzyme and drug 

transporter inhibition and induction, is also used in HCV treatment as a pharmacokinetic 

enhancer.16-18 Decreases in unbound darunavir concentrations when co-administered with 

the HCV drug telapravir in a co-infected patient have recently been reported.19 

Understanding the mechanisms behind these changes is critical to efficacious co-

administration of these drugs. Increases in unbound clearance result in lowered unbound 

concentrations, as demonstrated here, with potential detrimental outcomes depending on the 

efficacy target of the drug.6,20 therefore, studying unbound concentrations, which are the 

determinants of efficacy, is worthwhile when drugs with complex metabolic and transport 

profile, and thus, unpredictable interactions, are co-administered.
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Figure 1. 
Total and unbound lopinavir (a) and amprenavir (b) concentration-time plots, by study arm. 

Data are shown as median with interquartile range. For both graphs, Arm C is the combined 

treatment arm; Arm A is lopinavir/ritonavir alone (a); Arm B is fosamprenavir/ritonavir 

alone (b).
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