73 research outputs found

    Metal-insulator transition in the spinel-type Cu(Ir1-xVx)2S4

    Get PDF
    The spinel CuIr2S4 exhibits a temperature-induced metal-insulator (M-I) transition at around TM-I=226K with a structural transformation, at which a simultaneous bond dimerization with spin-singlet state and charge-ordering transition takes place. Conversely, CuV2S4 exhibits two-step anomalies at about 92 and 56K, reflecting the CDW state. High-purity spinel-type Cu(Ir1-xVx)2S4 specimens have been synthesized. The lattice constant does not obey Vegard\u27s law, but looks like a parabolic curve. The d electrons on the octahedral B sites play a dominant role in determining the physical properties. A low substitution (x≈0.04) of V for Ir leads to disappearance of the step-like sharp M-I transition, and vice versa, a low substitution of Ir for V destroys the CDW transition. The local structural and orbital degrees of freedom in Cu(Ir1-xVx)2S4 couple to the spin system and the electronic state. The M-I transition and the CDW state are incompatible with each other in Cu(Ir1-xVx)2S4. In the metallic phase, a novel relationship, namely "a mirror image effect" has been manifestly found between the residual resistivity and the electronic energy density-of-states D(εF) at the Fermi level. The lower the resistivity, the higher the value of D(εF). Furthermore, a composition-induced gradual M-I transition is found over the range of 0.00⩽x⩽1.00, where the most insulating behavior is displayed around x≈0.2-0.3

    Theory of Orbital Kondo Effect with Assisted Hopping in Strongly Correlated Electron Systems: Parquet Equations, Superconductivity and Mass Enhancement

    Full text link
    Orbital Kondo effect is treated in a model, where additional to the conduction band there are localized orbitals close to the Fermi energy. If the hopping between the conduction band and the localized heavy orbitals depends on the occupation of the atomic orbitals in the conduction band then orbital Kondo correlation occurs. The noncommutative nature of the coupling required for the Kondo effect is formally due to the form factors associated with the assisted hopping which in the momentum representation depends on the momenta of the conduction electrons involved. The leading logarithmic vertex corrections are due to the local Coulomb interaction between the electrons on the heavy orbital and in the conduction band. The renormalized vertex functions are obtained as a solution of a closed set of differential equations and they show power behavior. The amplitude of large renormalization is determined by an infrared cutoff due to finite energy and dispersion of the heavy particles. The enhanced assisted hopping rate results in mass enhancement and attractive interaction in the conduction band. The superconductivity transition temperature calculated is largest for intermediate mass enhancement, m/m23m^*/m \approx 2-3. For larger mass enhancement the small one particle weight (ZZ) in the Green's function reduces the transition temperature which may be characteristic for otherComment: 32 pages, RevTeX 3.0, figures on reques

    Dynamics of Tunneling Centers in Metallic Systems

    Full text link
    Dynamics of tunneling centers (TC) in metallic systems is studied, using the technique of bosonization. The interaction of the TC with the conduction electrons of the metal involves two processes, namely, the screening of the TC by electrons, and the so-called electron assisted tunneling. The presence of the latter process leads to a different form of the renormalized tunneling frequency of the TC, and the tunneling motion is damped with a temperature dependent relaxation rate. As the temperature is lowered, the relaxation rate per temperature shows a steep rise as opposed to that in the absence of electron assisted process. It is expected that this behavior should be observed at very low temperatures in a careful experiment. The present work thus tries to go beyond the existing work on the {\it dynamics} of a two-level system in metals, by treating the electron assisted process.Comment: REVTeX twocolumn format, 5 pages, two PostScript figures available on request. Preprint # : imsc 94/3

    Macroscopic Quantum Tunneling of a Domain Wall in a Ferromagnetic Metal

    Full text link
    The macroscopic quantum tunneling of a planar domain wall in a ferromagnetic metal is studied based on the Hubbard model. It is found that the ohmic dissipation is present even at zero temperature due to the gapless Stoner excitation, which is the crucial difference from the case of the insulating magnet. The dissipative effect is calculated as a function of width of the wall and is shown to be effective in a thin wall and in a weak ferromagnet. The results are discussed in the light of recent experiments on ferromagnets with strong anisotropy. PACS numbers:75.60.Ch, 03.65.Sq, 75.10.LpComment: 13page

    Macroscopic Quantum Tunneling and Dissipation of Domain Wall in Ferromagnetic Metals

    Full text link
    The depinning of a domain wall in ferromagentic metal via macroscopic quantum tunneling is studied based on the Hubbard model. The dynamics of the magnetization verctor is shown to be governed by an effective action of Heisenberg model with a term non-local in time that describes the dissipation due to the conduction electron. Due to the existence of the Fermi surface there exists Ohmic dissipation even at zero temperature, which is crucially different from the case of the insulator. Taking into account the effect of pinning and the external magnetic field the action is rewritten in terms of a collective coordinate, the position of the wall, QQ. The tunneling rate for QQ is calculated by use of the instanton method. It is found that the reduction of the tunneling rate due to the dissipation is very large for a thin domain wall with thickness of a few times the lattice spacing, but is negligible for a thick domain wall. Dissipation due to eddy current is shown to be negligible for a wall of mesoscopic size.Comment: of pages 26, to appear in "Quantum Tunneling of Magnetization, ed. B. Barbara and L. Gunther (Kluwer Academic Pub.), Figures available by FAX (81-48-462-4649

    Feasibility of Raindrop Size Distribution Parameter Estimation with TRMM Precipitation Radar

    No full text

    Retrieval of Raindrop and Cloud Particle Size Distributions with 14 GHz and 95 GHz Radars

    No full text
    corecore