2,461 research outputs found

    Blind separation of underdetermined mixtures with additive white and pink noises

    Get PDF
    This paper presents an approach for underdetermined blind source separation in the case of additive Gaussian white noise and pink noise. Likewise, the proposed approach is applicable in the case of separating I + 3 sources from I mixtures with additive two kinds of noises. This situation is more challenging and suitable to practical real world problems. Moreover, unlike to some conventional approaches, the sparsity conditions are not imposed. Firstly, the mixing matrix is estimated based on an algorithm that combines short time Fourier transform and rough-fuzzy clustering. Then, the mixed signals are normalized and the source signals are recovered using modified Gradient descent Local Hierarchical Alternating Least Squares Algorithm exploiting the mixing matrix obtained from the previous step as an input and initialized by multiplicative algorithm for matrix factorization based on alpha divergence. The experiments and simulation results show that the proposed approach can separate I + 3 source signals from I mixed signals, and it has superior evaluation performance compared to some conventional approaches

    Rotating charged AdS solutions in quadratic f(T)f(T) gravity

    Full text link
    We present a class of asymptotically anti-de Sitter charged rotating black hole solutions in f(T)f(T) gravity in NN-dimensions, where f(T)=T+αT2f(T)=T+\alpha T^{2}. These solutions are nontrivial extensions of the solutions presented in \cite{Lemos:1994xp} and \cite{Awad:2002cz} in the context of general relativity. They are characterized by cylindrical, toroidal or flat horizons, depending on global identifications. The static charged black hole configurations obtained in \cite{Awad:2017tyz} are recovered as special cases when the rotation parameters vanish. Similar to \cite{Awad:2017tyz} the static black holes solutions have two different electric multipole terms in the potential with related moments. Furthermore, these solutions have milder singularities compared to their general relativity counterparts. Using the conserved charges expressions obtained in \cite{Ulhoa:2013gca} and \cite{Maluf:2008ug} we calculate the total mass/energy and the angular momentum of these solutions.Comment: 11 pages, Version accepted in EPJ

    Scale Invariance and the AdS/CFT Correspondence

    Get PDF
    Using the AdS/CFT correspondence, we show that the Anti-de Sitter (AdS) rotating (Kerr) black holes in five and seven dimensions provide us with examples of non-trivial field theories which are scale, but not conformally invariant. This is demonstrated by our computation of the actions and the stress-energy tensors of the four and six dimensional field theories residing on the boundary of these Kerr-AdS black holes spacetimes.Comment: 3 pages. LaTeX, IJMP style. Contribution to proceedings of DPF 2000, held at Ohio State

    Phase Portraits of general f(T) Cosmology

    Full text link
    We use dynamical system methods to explore the general behaviour of f(T)f(T) cosmology. In contrast to the standard applications of dynamical analysis, we present a way to transform the equations into a one-dimensional autonomous system, taking advantage of the crucial property that the torsion scalar in flat FRW geometry is just a function of the Hubble function, thus the field equations include only up to first derivatives of it, and therefore in a general f(T)f(T) cosmological scenario every quantity is expressed only in terms of the Hubble function. The great advantage is that for one-dimensional systems it is easy to construct the phase space portraits, and thus extract information and explore in detail the features and possible behaviours of f(T)f(T) cosmology. We utilize the phase space portraits and we show that f(T)f(T) cosmology can describe the universe evolution in agreement with observations, namely starting from a Big Bang singularity, evolving into the subsequent thermal history and the matter domination, entering into a late-time accelerated expansion, and resulting to the de Sitter phase in the far future. Nevertheless, f(T)f(T) cosmology can present a rich class of more exotic behaviours, such as the cosmological bounce and turnaround, the phantom-divide crossing, the Big Brake and the Big Crunch, and it may exhibit various singularities, including the non-harmful ones of type II and type IV. We study the phase space of three specific viable f(T)f(T) models offering a complete picture. Moreover, we present a new model of f(T)f(T) gravity that can lead to a universe in agreement with observations, free of perturbative instabilities, and applying the Om(z) diagnostic test we confirm that it is in agreement with the combination of SNIa, BAO and CMB data at 1σ\sigma confidence level.Comment: 39 pages, 12 figures, version published in JCA

    Underdetermined blind source separation based on Fuzzy C-Means and Semi-Nonnegative Matrix Factorization

    Get PDF
    Conventional blind source separation is based on over-determined with more sensors than sources but the underdetermined is a challenging case and more convenient to actual situation. Non-negative Matrix Factorization (NMF) has been widely applied to Blind Source Separation (BSS) problems. However, the separation results are sensitive to the initialization of parameters of NMF. Avoiding the subjectivity of choosing parameters, we used the Fuzzy C-Means (FCM) clustering technique to estimate the mixing matrix and to reduce the requirement for sparsity. Also, decreasing the constraints is regarded in this paper by using Semi-NMF. In this paper we propose a new two-step algorithm in order to solve the underdetermined blind source separation. We show how to combine the FCM clustering technique with the gradient-based NMF with the multi-layer technique. The simulation results show that our proposed algorithm can separate the source signals with high signal-to-noise ratio and quite low cost time compared with some algorithms

    Intestinal epithelial responses to Salmonella enterica serovar Enteritidis: Effects on intestinal permeability and ion transport

    Get PDF
    Salmonella infection of chickens that leads to potential human foodborne salmonellosis continues to be a major concern. Chickens serve as carriers but, in contrast to humans, rarely show any clinical signs including diarrhea. The present investigations aimed to elucidate whether the absence of diarrhea during acute Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) infection may be linked to specific changes in the electrophysiological properties of the chicken gut. Immediately after slaughter, intestinal pieces of the mid-jejunum and cecum of either commercial broiler or specific pathogen-free (SPF) chickens were mounted in Ussing chambers in 2 separate experimental series. Living Salmonella Enteritidis (3 × 109) or Salmonella Enteritidis endotoxin (20 mg/L), or both, were added to the mucosal side for 1 h. In both experimental series, the Salmonella infection decreased the trans-epithelial ion conductance Gt (P < 0.05). In the jejunum of SPF chickens, there was also a marked decrease in net charge transfer across the epithelium, evidenced by decreased short-circuit current (Isc, P < 0.05). Interestingly, the mucosal application of Salmonella endotoxin to the epithelial preparations from jejunum and cecum of SPF chicken had an effect similar to living bacteria. However, the endotoxin had no additional effect on the intestinal function in the presence of bacteria. The decreasing effect of Salmonella and or its endotoxin on Gt could be partly reversed by serosal addition of histamine. To our knowledge, this is the first study to address the functional response of native intestinal epithelium of chicken to an in vitro Salmonella infection. For the first time, it can be reported that intestinal ion permeability of chicken decreases acutely by the presence of Salmonella. This type of response could counteract ion and fluid secretion and may thus, at least in part, explain why chickens do not develop overt diarrhea after Salmonella infection

    Campylobacter jejuni colonization promotes the translocation of Escherichia coli to extra-intestinal organs and disturbs the short-chain fatty acids profiles in the chicken gut

    Get PDF
    For a long time Campylobacter was only considered as a commensal microorganism in avian hosts restricted to the ceca, without any pathogenic features. The precise reasons for the symptomless chicken carriers are still unknown, but investigations of the gastrointestinal ecology of broiler chickens may improve our understanding of the microbial interactions with the host. Therefore, the current studies were conducted to investigate the effects of Campylobacter jejuni colonization on Escherichia coli translocation and on the metabolic end products (short-chain fatty acids, SCFAs). Following oral infection of 14 day old broiler chickens with 1 × 108 CFU of Campylobacter jejuni NCTC 12744 in two independent animal trials, it was found that C. jejuni heavily colonized the intestine and disseminate to extra-intestinal organs. Moreover, in both animal trials, the findings revealed that C. jejuni promoted the translocation of E. coli with a higher number encountered in the spleen and liver at 14 days post infection (dpi). In addition, Campylobacter affected the microbial fermentation in the gastrointestinal tract of broilers by reducing the amount of propionate, isovalerate, and isobutyrate in the cecal digesta of the infected birds at 2 dpi and, at 7 and 14 dpi, butyrate, isobutyrate, and isovalerate were also decreased. However, in the jejunum, the C. jejuni infection lowered only butyrate concentrations at 14 dpi. These data indicated that C. jejuni may utilize SCFAs as carbon sources to promote its colonization in the chicken gut, suggesting that Campylobacter cannot only alter gut colonization dynamics but might also influence physiological processes due to altered microbial metabolite profiles. Finally, the results demonstrated that C. jejuni can cross the intestinal epithelial barrier and facilitates the translocation of Campylobacter itself as well as of other enteric microorganisms such as E. coli to extra-intestinal organs of infected birds. Altogether, our findings suggest that the Campylobacter carrier state in chicken is characterised by multiple changes in the intestinal barrier function, which supports multiplication and survival within the host

    Photodesorption of CO ice

    Get PDF
    At the high densities and low temperatures found in star forming regions, all molecules other than H2 should stick on dust grains on timescales shorter than the cloud lifetimes. Yet these clouds are detected in the millimeter lines of gaseous CO. At these temperatures, thermal desorption is negligible and hence a non-thermal desorption mechanism is necessary to maintain molecules in the gas phase. Here, the first laboratory study of the photodesorption of pure CO ice under ultra high vacuum is presented, which gives a desorption rate of 3E-3 CO molecules per UV (7-10.5 eV) photon at 15 K. This rate is factors of 1E2-1E5 larger than previously estimated and is comparable to estimates of other non-thermal desorption rates. The experiments constrains the mechanism to a single photon desorption process of ice surface molecules. The measured efficiency of this process shows that the role of CO photodesorption in preventing total removal of molecules in the gas has been underestimated.Comment: 5 pages, 4 figures, accepted by ApJ

    Investigation of nanodispersion in polystyrene-montmorillonite nanocomposites by solid state NMR

    Get PDF
    Nanocomposites result from combinations of materials with vastly different properties in the nanometer scale. These materials exhibit many unique properties such as improved thermal stability, reduced flammability, and improved mechanical properties. Many of the properties associated with polymer–clay nanocomposites are a function of the extent of exfoliation of the individual clay sheets or the quality of the nanodispersion. This work demonstrates that solid-state NMR can be used to characterize, quantitatively, the nanodispersion of variously modified montmorillonite (MMT) clays in polystyrene (PS) matrices. The direct influence of the paramagnetic Fe3, embedded in the aluminosilicate layers of MMT, on polymer protons within about 1 nm from the clay surfaces creates relaxation sources, which, via spin diffusion, significantly shorten the overall proton longitudinal relaxation time (T1 H). Deoxygenated samples were used to avoid the particularly strong contribution to the T1 H of PS from paramagnetic molecular oxygen. We used T1 H as an indicator of the nanodispersion of the clay in PS. This approach correlated reasonably well with X-ray diffraction and transmission electron microscopy (TEM) data. A model for interpreting the saturation-recovery data is proposed such that two parameters relating to the dispersion can be extracted. The first parameter, f, is the fraction of the potentially available clay surface that has been transformed into polymer–clay interfaces. The second parameter is a relative measure of the homogeneity of the dispersion of these actual polymer–clay interfaces. Finally, a quick assay of T1 H is reported for samples equilibrated with atmospheric oxygen. Included are these samples as well as 28 PS/MMT nanocomposite samples prepared by extrusion. These measurements are related to the development of highthroughput characterization techniques. This approach gives qualitative indications about dispersion; however, the more time-consuming analysis, of a few deoxygenated samples from this latter set, offers significantly greater insight into the clay dispersion. A second, probably superior, rapid-analysis method, applicable to oxygen-containing samples, is also demonstrated that should yield a reasonable estimate of the f parameter. Thus, for PS/MMT nanocomposites, one has the choice of a less complete NMR assay of dispersion that is significantly faster than TEM analysis, versus a slower and more complete NMR analysis with sample times comparable to TEM, information rivaling that of TEM, and a substantial advantage that this is a bulk characterization method. © 2003 Wiley Periodicals, Inc.* J Polym Sci Part B: Polym Phys 41: 3188–3213, 200
    • …
    corecore