269 research outputs found

    Traces of the last earthquake sequence (1939-1944) along NAF from lacustrine sediments

    Full text link
    Understanding the irregularity of seismic cycles: A case study in Turke

    Development of paleoseismic trench logging and dating techniques: a case study on the Central North Anatolian Fault

    Get PDF
    The North Anatolian Fault (NAF) is a dextral strike slip fault zone extending ~1400km in an arc across northern Turkey. This study seeks to further constrain the timing of ground rupturing earthquakes of the NAF while developing the techniques used in paleoseismology. A paleoseismic trench was opened ~2.7km NW of Destek on a segment which ruptured (for ~280km) in the 1943 Tosya Earthquake (Mw:7.7). The trench site comprises a pop-up structure formed by a small releasing step-over at a restraining bend which has caused progressive growth of an upslope facing scarp. The trench is situated across the main fault trace and a trapped sedimentary sequence that includes several paleosoils. The stratigraphy is expected to be Late Holocene and historic in age due to the high level of activity on the NAF, although this has yet to be confirmed by radiometric dating. Preliminary interpretation of the trench stratigraphy indicates a record of up to 6 paleoearthquake events, the presence of an angular unconformity suggests the record may be incomplete beyond the 3 most recent events on this strand.Subtle contrasts in stratigraphy made conventional face logging difficult and was therefore augmented by mapping the magnetic susceptibility (MS) of the west wall. Approximately 6000 measurements were made using a Bartington MS2 Magnetic Susceptibility Meter with a MS2E (point) Sensor with a 5cm vertical spacing and a 20cm horizontal spacing predominantly on one side of the trench. A pilot test led to development of a strategy of moving the sensor to the nearest exposure of coarse sand or finer grained material where possible to minimize the noise generated by individual clasts. To negate the sensitivity of the MS logging method to variations in temperature the survey was conducted at night. Plotted data clearly shows the contact between rock units, the rock-soil interface (reflecting fault juxtaposition), anthropogenic influence and some soil stratigraphy. Other paleoseismic investigations on this section of the NAF (Hartleb R. et al 2003 and Yoshioka T. et al 2000) have encountered out-of-stratigraphic-order ranges in 14C ages. They attributed this to reworking, in addition to which the effects of long term human occupation are likely to be similar. The trench yielded a large amount of datable material including 158 charcoal and 140 minute gastropod samples, and some ceramic, bone and slag samples. Unlike charcoal and bone fragments, fragile minute gastropods are unlikely to have been transported, reworked or used by humans, ultimately providing improved accuracy of temporal constraints on paleoearthquakes. Using both charcoal and gastropod samples, the trench chronology can be established and the use of minute gastropods for dating paleoearthquakes can be critiqued

    Next-to-leading and resummed BFKL evolution with saturation boundary

    Get PDF
    We investigate the effects of the saturation boundary on small-x evolution at the next-to-leading order accuracy and beyond. We demonstrate that the instabilities of the next-to-leading order BFKL evolution are not cured by the presence of the nonlinear saturation effects, and a resummation of the higher order corrections is therefore needed for the nonlinear evolution. The renormalization group improved resummed equation in the presence of the saturation boundary is investigated, and the corresponding saturation scale is extracted. A significant reduction of the saturation scale is found, and we observe that the onset of the saturation corrections is delayed to higher rapidities. This seems to be related to the characteristic feature of the resummed splitting function which at moderately small values of x possesses a minimum.Comment: 34 page

    Energy Conservation and Saturation in Small-x Evolution

    Full text link
    Important corrections to BFKL evolution are obtained from non-leading contributions and from non-linear effects due to unitarisation or saturation. It has been difficult to estimate the relative importance of these effects, as NLO effects are most easily accounted for in momentum space while unitarisation and saturation are easier in transverse coordinate space. An essential component of the NLO contributions is due to energy conservation effects, and in this paper we present a model for implementing such effects together with saturation in Mueller's dipole evolution formalism. We find that energy conservation severely dampens the small-x rise of the gluon density and, as a consequence, the onset of saturation is delayed. Using a simple model for the proton we obtain a reasonable qualitative description of the x-dependence of F2 at low Q^2 as measured at HERA even without saturation effects. We also give qualitative descriptions of the energy dependence of the cross section for gamma*-gamma* and gamma*-nucleus scattering

    Non-linear evolution in CCFM: The interplay between coherence and saturation

    Full text link
    We solve the CCFM equation numerically in the presence of a boundary condition which effectively incorporates the non-linear dynamics. We retain the full dependence of the unintegrated gluon distribution on the coherence scale, and extract the saturation momentum. The resulting saturation scale is a function of both rapidity and the coherence momentum. In Deep Inelastic Scattering this will lead to a dependence of the saturation scale on the photon virtuality in addition to the usual x-Bjorken dependence. At asymptotic energies the interplay between the perturbative non-linear physics, and that of the QCD coherence, leads to an interesting and novel dynamics where the saturation momentum itself eventually saturates. We also investigate various implementations of the "non-Sudakov" form factor. It is shown that the non-linear dynamics leads to almost identical results for different form factors. Finally, different choices of the scale of the running coupling are analyzed and implications for the phenomenology are discussed.Comment: 37 pages, 21 figure

    Electronic Spin Transport in Dual-Gated Bilayer Graphene

    Full text link
    The elimination of extrinsic sources of spin relaxation is key in realizing the exceptional intrinsic spin transport performance of graphene. Towards this, we study charge and spin transport in bilayer graphene-based spin valve devices fabricated in a new device architecture which allows us to make a comparative study by separately investigating the roles of substrate and polymer residues on spin relaxation. First, the comparison between spin valves fabricated on SiO2 and BN substrates suggests that substrate-related charged impurities, phonons and roughness do not limit the spin transport in current devices. Next, the observation of a 5-fold enhancement in spin relaxation time in the encapsulated device highlights the significance of polymer residues on spin relaxation. We observe a spin relaxation length of ~ 10 um in the encapsulated bilayer with a charge mobility of 24000 cm2/Vs. The carrier density dependence of spin relaxation time has two distinct regimes; n<4 x 1012 cm-2, where spin relaxation time decreases monotonically as carrier concentration increases, and n>4 x 1012 cm-2, where spin relaxation time exhibits a sudden increase. The sudden increase in the spin relaxation time with no corresponding signature in the charge transport suggests the presence of a magnetic resonance close to the charge neutrality point. We also demonstrate, for the first time, spin transport across bipolar p-n junctions in our dual-gated device architecture that fully integrates a sequence of encapsulated regions in its design. At low temperatures, strong suppression of the spin signal was observed while a transport gap was induced, which is interpreted as a novel manifestation of impedance mismatch within the spin channel

    Spin Relaxation in Single Layer Graphene with Tunable Mobility

    Full text link
    Graphene is an attractive material for spintronics due to theoretical predictions of long spin lifetimes arising from low spin-orbit and hyperfine couplings. In experiments, however, spin lifetimes in single layer graphene (SLG) measured via Hanle effects are much shorter than expected theoretically. Thus, the origin of spin relaxation in SLG is a major issue for graphene spintronics. Despite extensive theoretical and experimental work addressing this question, there is still little clarity on the microscopic origin of spin relaxation. By using organic ligand-bound nanoparticles as charge reservoirs to tune mobility between 2700 and 12000 cm2/Vs, we successfully isolate the effect of charged impurity scattering on spin relaxation in SLG. Our results demonstrate that while charged impurities can greatly affect mobility, the spin lifetimes are not affected by charged impurity scattering.Comment: 13 pages, 5 figure

    Energy dependence of the saturation scale and the charged multiplicity in pp and AA collisions

    Full text link
    A natural framework to understand the energy dependence of bulk observables from lower energy experiments to the LHC is provided by the Color Glass Condensate, which leads to a "geometrical scaling" in terms of an energy dependent saturation scale Q_s. The measured charged multiplicity, however, seems to grow faster (~\sqrt{s}^0.3) in nucleus-nucleus collisions than it does for protons (~\sqrt{s}^0.2), violating the expectation from geometric scaling. We argue that this difference between pp and AA collisions can be understood from the effect of DGLAP evolution on the value of the saturation scale, and is consistent with gluon saturation observations at HERA.Comment: RevTeX, 8 pages, 4 figures. V2: modified discussion of fragmentation, published in EPJ
    corecore