2 research outputs found

    The impact of oxidiser humidity on methane combustion in a gas burner

    Get PDF
    The improvement of thermodynamic and environmental indicators of energy facilities is a vital and topical problem. Numerical simulation methods are used to investigate the processes of combustion and formation of hazardous substances by computation, and to work out recommendations on increasing the effectiveness of fuel combustion. The paper examines the impact of atmospheric air humidity on the process of combustion of a stoichiometric methane-air mixture in a burner. The combustion process is simulated in the 3D unsteady statement in Cartesian coordinates. In the investigation, the combustion of the methane-air mixture is considered in one stage. Air humidity is considered in the 0 to 100% range. The monoxide nitrogen formation process is described using the extended Zeldovich-Fenimore mechanism. A comparative study has found that increasing air humidity up to 100% reduces the mass emission of monoxide nitrogen by a factor of 1.27, as compared to dry air. The study results can be used for designing equipment that uses methane as fuel

    Numerical Simulation of the Process of Combustion of a Stoichiometric Hydrogen-Oxygen Mixture in a Steam Generator

    Get PDF
    Numerical methods are used to study the process of combustion of a stoichiometric hydrogen-oxygen mixture. The mathematical models were validated using experimental data. The combustion process is modelled in the three-dimensional unsteady formulation. With account of the recommendations of other authors, the turbulent flows are described in the paper using the standard k-ε turbulence model. The Eddy Dissipation Model (EDM) is used to describe the process of combustion of the hydrogen-oxygen mixture. The description of the complex heat transfer between the gas, flame and walls in the paper accounts for radiant heat transfer by using the P1 model. The paper deals with combustion processes in a burner and a model steam generator. Numerical methods were used to evaluate the effect of inlet flow turbulisation, and the flow rate and the method of feeding extra water to the combustion chamber on the process of combustion of the stoichiometric hydrogen-oxygen mixture. The influence of the design and operating mode factors on the alteration of the flame-steam interface and on the flame extinguishing conditions were studied. The results obtained can be used in future in designing equipment that uses hydrogen as a fuel to increase nuclear power plant (NPP) manoeuvrability
    corecore