42 research outputs found

    Quasi one dimensional transport in individual electrospun composite nanofibers

    Get PDF
    We present results of transport measurements of individual suspended electrospun nanofibers Poly(methyl methacrylate)-multiwalled carbon nanotubes. The nanofiber is comprised of highly aligned consecutive multiwalled carbon nanotubes. We have confirmed that at the range temperature from room temperature down to ∼60 K, the conductance behaves as power-law of temperature with an exponent of α ∼ 2.9−10.2. The current also behaves as power law of voltage with an exponent of β ∼ 2.3−8.6. The power-law behavior is a footprint for one dimensional transport. The possible models of this confined system are discussed. Using the model of Luttinger liquid states in series, we calculated the exponent for tunneling into the bulk of a single multiwalled carbon nanotube αbulk ∼ 0.06 which agrees with theoretical predictions

    Cytological diagnostic features of late breast implant seromas. From reactive to anaplastic large cell lymphoma

    Get PDF
    Late breast implant seroma may be the presentation of a breast implant-associated anaplastic large cell lymphoma (BI-ALCL), which claims for a prompt recognition. However, BI-ALCL diagnosis on fine-needle aspiration (FNA) might be challenging for pathologists lacking experience with peri-implant breast effusions. Sixty-seven late breast implant seromas collected by FNA from 50 patients were evaluated by Papanicolaou smear stain and immunocytochemistry on cell blocks. A diagnostic algorithm based on the cellular composition, cell morphology and percentage of CD30+ cells was developed. Histological evaluation of the corresponding peri-prosthetic capsules was also performed. Most of the effusions (91% of the samples) were classified as reactive and 9% as BI-ALCL. In the BI-ALCL cases, medium-to-large atypical cells expressing CD30 represented more than 70% of the cellularity, whereas in in the reactive effusions CD30+ elements were extremely rare (<5%) and consisted of non-atypical elements. The reactive effusions were categorized into three patterns: i) acute infiltrate with prominent neutrophilic component (33% of the samples); ii) mixed infiltrate characterized by a variable number of neutrophils, lymphocytes and macrophages (30% of the samples); iii) chronic infiltrate composed predominantly of T lymphocytes or macrophages with only sporadic granulocytes (37% of the samples). The inflammatory cytological patterns were consistent with the histology of the corresponding capsules. Our results indicate that cytological analysis of late breast implant effusions, supported by the knowledge of the heterogeneous cytomorphological spectrum of late seromas, is a valuable approach for the early recognition of BI-ALCL

    Electrochemical deposition of polypyrrole nanolayers on discontinuous ultrathin gold films

    No full text
    Ultrathin layers of polypyrrole (PPy) were electrochemically grown between microelectrodes on a Si/SiO2Si/SiO_2 substrate. Conducting nanolayers of PPy are directly grown onto ultrathin discontinuous gold (Au) film between the microelectrodes, with thicknesses in the range 10–100 nm. The system therefore forms a novel (PPy/Au) nanocomposite conductor. Atomic force microscopy (AFM) imaging and conductivity measurements indicate that at all thicknesses a relatively uniform film is formed but with significant roughness that reflects the roughness of the metallic island layer. In PPy/Au films with thickness 10nm\sim 10 nm, the small barriers around the gold islands dominate the conduction, and as the film thickness increases to 100 nm the intrinsic conductivity of highly doped PPy dominates the charge transport

    Mechanical properties of individual composite poly(methyl-methacrylate) -multiwalled carbon nanotubes nanofibers

    No full text
    Multiwalled carbon nanotubes with their superb mechanical properties are an unique filler material for polymer composites. Here, we present an investigation of mechanical properties of electrospun Poly-(methyl-methacrylate) multiwalled carbon nanotubes composite nanofibers. The method of electrospinning was used to fabricate suspended individual Poly-(methyl-methacrylate) multiwalled carbon nanotubes nanofibers. In order to reinforce the nanofibers, different high concentration of multiwalled carbon nanotubes were used. Transmission electron microscopy measurements reveal a successful filling of the nanofibers. The different types of nanofibers were deposited at SiO2 substrates. Which were previously etched, to create trenches for bend tests. Followed by fixing the nanofiber with a focus ion beam platinum deposition at the trench edges. An atomic force microscopy was used to perform the mechanical nanofiber bending tests over trenches. The results were compared with pristine Poly-(methyl- methacrylate) nanofibers to nanofibers with 15 weight% and 20 weight% multiwalled carbon nanotubes composite fibers. We observed that pristine nanofibers have Young's modulus of 136 MPa, while for composite nanofibers with 15 weight% have 2.65 GPa and with 20 weight% have 6.06 GPa (at room temperature and air ambiance). This corresponds to an increase of Young's modulus of 19 fold between the pristine nanofibers and the 15 weight% of mutliwalled carbon nanotubes filled nanofibers. Therefore the increase of the Young's modulus compared between the pristine and the 20 weight% MWCNT filled nanofibers corresponds to 45 fold
    corecore