795 research outputs found

    A Perturbative Approach to the Relativistic Harmonic Oscillator

    Get PDF
    A quantum realization of the Relativistic Harmonic Oscillator is realized in terms of the spatial variable xx and {\d\over \d x} (the minimal canonical representation). The eigenstates of the Hamiltonian operator are found (at lower order) by using a perturbation expansion in the constant c−1c^{-1}. Unlike the Foldy-Wouthuysen transformed version of the relativistic hydrogen atom, conventional perturbation theory cannot be applied and a perturbation of the scalar product itself is required.Comment: 9 pages, latex, no figure

    Spacetime structure of the global vortex

    Get PDF
    We analyse the spacetime structure of the global vortex and its maximal analytic extension in an arbitrary number of spacetime dimensions. We find that the vortex compactifies space on the scale of the Hubble expansion of its worldvolume, in a manner reminiscent of that of the domain wall. We calculate the effective volume of this compactification and remark on its relevance to hierarchy resolution with extra dimensions. We also consider strongly gravitating vortices and derive bounds on the existence of a global vortex solution.Comment: 19 pages revtex, 2 figures, minor changes, references adde

    Quantum correlations in the temporal CHSH scenario

    Full text link
    We consider a temporal version of the CHSH scenario using projective measurements on a single quantum system. It is known that quantum correlations in this scenario are fundamentally more general than correlations obtainable with the assumptions of macroscopic realism and non-invasive measurements. In this work, we also educe some fundamental limitations of these quantum correlations. One result is that a set of correlators can appear in the temporal CHSH scenario if and only if it can appear in the usual spatial CHSH scenario. In particular, we derive the validity of the Tsirelson bound and the impossibility of PR-box behavior. The strength of possible signaling also turns out to be surprisingly limited, giving a maximal communication capacity of approximately 0.32 bits. We also find a temporal version of Hardy's nonlocality paradox with a maximal quantum value of 1/4.Comment: corrected versio

    On the Relationship between Convex Bodies Related to Correlation Experiments with Dichotomic Observables

    Get PDF
    In this paper we explore further the connections between convex bodies related to quantum correlation experiments with dichotomic variables and related bodies studied in combinatorial optimization, especially cut polyhedra. Such a relationship was established in Avis, Imai, Ito and Sasaki (2005 J. Phys. A: Math. Gen. 38 10971-87) with respect to Bell inequalities. We show that several well known bodies related to cut polyhedra are equivalent to bodies such as those defined by Tsirelson (1993 Hadronic J. S. 8 329-45) to represent hidden deterministic behaviors, quantum behaviors, and no-signalling behaviors. Among other things, our results allow a unique representation of these bodies, give a necessary condition for vertices of the no-signalling polytope, and give a method for bounding the quantum violation of Bell inequalities by means of a body that contains the set of quantum behaviors. Optimization over this latter body may be performed efficiently by semidefinite programming. In the second part of the paper we apply these results to the study of classical correlation functions. We provide a complete list of tight inequalities for the two party case with (m,n) dichotomic observables when m=4,n=4 and when min{m,n}<=3, and give a new general family of correlation inequalities.Comment: 17 pages, 2 figure

    Hawking Radiation from AdS Black Holes

    Get PDF
    We investigate Hawking radiation from black holes in (d+1)-dimensional anti-de Sitter space. We focus on s-waves, make use of the geometrical optics approximation, and follow three approaches to analyze the radiation. First, we compute a Bogoliubov transformation between Kruskal and asymptotic coordinates and compare the different vacua. Second, following a method due to Kraus, Parikh, and Wilczek, we view Hawking radiation as a tunneling process across the horizon and compute the tunneling probablility. This approach uses an anti-de Sitter version of a metric originally introduced by Painleve for Schwarzschild black holes. From the tunneling probability one also finds a leading correction to the semi-classical emission rate arising from the backreaction to the background geometry. Finally, we consider a spherically symmetric collapse geometry and the Bogoliubov transformation between the initial vacuum state and the vacuum of an asymptotic observer.Comment: 13 pages, latex2e, v2: some clarifications and references adde

    Stable quantum systems in anti-de Sitter space: Causality, independence and spectral properties

    Full text link
    If a state is passive for uniformly accelerated observers in n-dimensional anti-de Sitter space-time (i.e. cannot be used by them to operate a perpetuum mobile), they will (a) register a universal value of the Unruh temperature, (b) discover a PCT symmetry, and (c) find that observables in complementary wedge-shaped regions necessarily commute with each other in this state. The stability properties of such a passive state induce a "geodesic causal structure" on AdS and concommitant locality relations. It is shown that observables in these complementary wedge-shaped regions fulfill strong additional independence conditions. In two-dimensional AdS these even suffice to enable the derivation of a nontrivial, local, covariant net indexed by bounded spacetime regions. All these results are model-independent and hold in any theory which is compatible with a weak notion of space-time localization. Examples are provided of models satisfying the hypotheses of these theorems.Comment: 27 pages, 1 figure: dedicated to Jacques Bros on the occasion of his 70th birthday. Revised version: typos corrected; as to appear in J. Math. Phy

    Scalar field quantization on the 2+1 dimensional black hole background

    Full text link
    The quantization of a massless conformally coupled scalar field on the 2+1 dimensional Anti de Sitter black hole background is presented. The Green's function is calculated, using the fact that the black hole is Anti de Sitter space with points identified, and taking into account the fact that the black hole spacetime is not globally hyperbolic. It is shown that the Green's function calculated in this way is the Hartle-Hawking Green's function. The Green's function is used to compute ⟹TΜΌ⟩\langle T^\mu_\nu \rangle, which is regular on the black hole horizon, and diverges at the singularity. A particle detector response function outside the horizon is also calculated and shown to be a fermi type distribution. The back-reaction from ⟹TΌΜ⟩\langle T_{\mu\nu} \rangle is calculated exactly and is shown to give rise to a curvature singularity at r=0r=0 and to shift the horizon outwards. For M=0M=0 a horizon develops, shielding the singularity. Some speculations about the endpoint of evaporation are discussed.Comment: CTP 2243, 24 pages, RevTex. (The backreaction section is extended, and some confusing notation has been changed

    The abolition of the General Teaching Council for England and the future of teacher discipline

    Get PDF
    With the abolition of the General Teaching Council for England in the 2011 Education Act, this article considers the future of teacher discipline in England. It provides a critique of the changes to the regulation of teacher misconduct and incompetence that draws on a Foucauldian framework, especially concerning the issue of public displays of discipline and the concomitant movement to more hidden forms. In addition, the external context of accountability that accompanies the reforms to teacher discipline are considered including the perfection of the panoptic metaphor presented by the changes to Ofsted practices such as the introduction of zero-notice inspections. The article concludes that the reforms will further move teachers from being occupational professionals to being organisational professionals marking them apart from comparable professions in medicine and law

    Comfort radicalism and NEETs: a conservative praxis

    Get PDF
    Young people who are not in education, employment or training (NEET) are construed by policy makers as a pressing problem about which something should be done. Such young people's lack of employment is thought to pose difficulties for wider society in relation to social cohesion and inclusion and it is feared that they will become a 'lost generation'. This paper(1) draws upon English research, seeking to historicise the debate whilst acknowledging that these issues have a much wider purchase. The notion of NEETs rests alongside longstanding concerns of the English state and middle classes, addressing unruly male working class youth as well as the moral turpitude of working class girls. Waged labour and domesticity are seen as a means to integrate such groups into society thereby generating social cohesion. The paper places the debate within it socio-economic context and draws on theorisations of cognitive capitalism, Italian workerism, as well as emerging theories of antiwork to analyse these. It concludes by arguing that ‘radical’ approaches to NEETs that point towards inequities embedded in the social structure and call for social democratic solutions veer towards a form of comfort radicalism. Such approaches leave in place the dominance of capitalist relations as well as productivist orientations that celebrate waged labour

    Bulk vs. Boundary Dynamics in Anti-de Sitter Spacetime

    Get PDF
    We investigate the details of the bulk-boundary correspondence in Lorentzian signature anti-de Sitter space. Operators in the boundary theory couple to sources identified with the boundary values of non-normalizable bulk modes. Such modes do not fluctuate and provide classical backgrounds on which bulk excitations propagate. Normalizable modes in the bulk arise as a set of saddlepoints of the action for a fixed boundary condition. They fluctuate and describe the Hilbert space of physical states. We provide an explicit, complete set of both types of modes for free scalar fields in global and Poincar\'e coordinates. For \ads{3}, the normalizable and non-normalizable modes originate in the possible representations of the isometry group \SL_L\times\SL_R for a field of given mass. We discuss the group properties of mode solutions in both global and Poincar\'e coordinates and their relation to different expansions of operators on the cylinder and on the plane. Finally, we discuss the extent to which the boundary theory is a useful description of the bulk spacetime.Comment: Standard LaTeX, 28 pages, 2 postscript figures. v2: References added. Substantial revision in section 3 of treatment of global modes; non-normalizable modes have arbitrary time dependence. Revised discussion of low-mass modes and puzzle raised re: coupling of the dual boundary operators. v3: unwanted paragraph removed. v4: Sec. 5.2 correcte
    • 

    corecore