197 research outputs found

    Regulation of Adipose Tissue Stromal Cells Behaviors by Endogenic Oct4 Expression Control

    Get PDF
    BACKGROUND: To clarify the role of the POU domain transcription factor Oct4 in Adipose Tissue Stromal Cells (ATSCs), we investigated the regulation of Oct4 expression and other embryonic genes in fully differentiated cells, in addition to identifying expression at the gene and protein levels. The ATSCs and several immature cells were routinely expressing Oct4 protein before and after differentiating into specific lineages. METHODOLOGY/PRINCIPAL FINDINGS AND CONCLUSIONS: Here, we demonstrated the role of Oct4 in ATSCs on cell proliferation and differentiation. Exogenous Oct4 improves adult ATSCs cell proliferation and differentiation potencies through epigenetic reprogramming of stemness genes such as Oct4, Nanog, Sox2, and Rex1. Oct4 directly or indirectly induces ATSCs reprogramming along with the activation of JAK/STAT3 and ERK1/2. Exogenic Oct4 introduced a transdifferentiation priority into the neural lineage than mesodermal lineage. Global gene expression analysis results showed that Oct4 regulated target genes which could be characterized as differentially regulated genes such as pluripotency markers NANOG, SOX2, and KLF4 and markers of undifferentiated stem cells FOXD1, CDC2, and EPHB1. The negatively regulated genes included FAS, TNFR, COL6A1, JAM2, FOXQ1, FOXO1, NESTIN, SMAD3, SLIT3, DKK1, WNT5A, BMP1, and GLIS3 which are implicated in differentiation processes as well as a number of novel genes. Finally we have demonstrated the therapeutic utility of Oct4/ATSCs were introduced into the mouse traumatic brain, engrafted cells was more effectively induces regeneration activity with high therapeutic modality than that of control ATSCs. Engrafted Oct4/ATSCs efficiently migrated and transdifferentiated into action potential carrying, functionally neurons in the hippocampus and promoting the amelioration of lesion cavities

    A direct physical interaction between Nanog and Sox2 regulates embryonic stem cell self-renewal

    Get PDF
    Embryonic stem (ES) cell self-renewal efficiency is determined by the Nanog protein level. However, the protein partners of Nanog that function to direct self-renewal are unclear. Here, we identify a Nanog interactome of over 130 proteins including transcription factors, chromatin modifying complexes, phosphorylation and ubiquitination enzymes, basal transcriptional machinery members, and RNA processing factors. Sox2 was identified as a robust interacting partner of Nanog. The purified Nanog–Sox2 complex identified a DNA recognition sequence present in multiple overlapping Nanog/Sox2 ChIP-Seq data sets. The Nanog tryptophan repeat region is necessary and sufficient for interaction with Sox2, with tryptophan residues required. In Sox2, tyrosine to alanine mutations within a triple-repeat motif (S X T/S Y) abrogates the Nanog–Sox2 interaction, alters expression of genes associated with the Nanog-Sox2 cognate sequence, and reduces the ability of Sox2 to rescue ES cell differentiation induced by endogenous Sox2 deletion. Substitution of the tyrosines with phenylalanine rescues both the Sox2–Nanog interaction and efficient self-renewal. These results suggest that aromatic stacking of Nanog tryptophans and Sox2 tyrosines mediates an interaction central to ES cell self-renewal

    Histone arginine methylation regulates pluripotency in the early mouse embryo

    Get PDF
    It has been generally accepted that the mammalian embryo starts its development with all cells identical, and only when inside and outside cells form do differences between cells first emerge. However, recent findings show that cells in the mouse embryo can differ in their developmental fate and potency as early as the four-cell stage1,2,3,4. These differences depend on the orientation and order of the cleavage divisions that generated them2,5. Because epigenetic marks are suggested to be involved in sustaining pluripotency6,7, we considered that such developmental properties might be achieved through epigenetic mechanisms. Here we show that modification of histone H3, through the methylation of specific arginine residues, is correlated with cell fate and potency. Levels of H3 methylation at specific arginine residues are maximal in four-cell blastomeres that will contribute to the inner cell mass (ICM) and polar trophectoderm and undertake full development when combined together in chimaeras. Arginine methylation of H3 is minimal in cells whose progeny contributes more to the mural trophectoderm and that show compromised development when combined in chimaeras. This suggests that higher levels of H3 arginine methylation predispose blastomeres to contribute to the pluripotent cells of the ICM. We confirm this prediction by overexpressing the H3-specific arginine methyltransferase CARM1 in individual blastomeres and show that this directs their progeny to the ICM and results in a dramatic upregulation of Nanog and Sox2. Thus, our results identify specific histone modifications as the earliest known epigenetic marker contributing to development of ICM and show that manipulation of epigenetic information influences cell fate determination

    Searching ChIP-seq genomic islands for combinatorial regulatory codes in mouse embryonic stem cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To facilitate deciphering underlying transcriptional regulatory circuits in mouse embryonic stem (ES) cells, recent ChIP-seq data provided genome-wide binding locations of several key transcription factors (TFs); meanwhile, existing efforts profiled gene expression in ES cells and in their early differentiated state. It has been shown that the gene expression profiles are correlated with the binding of these TFs. However, it remains unclear whether other TFs, referred to as cofactors, participate the gene regulation by collaborating with the ChIP-seq TFs.</p> <p>Results</p> <p>Based on our analyses of the ES gene expression profiles and binding sites of potential cofactors in vicinity of the ChIP-seq TF binding locations, we identified a list of co-binding features that show significantly different characteristics between different gene expression patterns (activated or repressed gene expression in ES cells) at a false discovery rate of 10%. Gene classification with a subset of the identified features achieved up to 20% improvement over classification only based on the ChIP-seq TFs. More than 1/3 of reasoned regulatory roles of cofactor candidates involved in these features are supported by existing literatures. Finally, the predicted target genes of the majority candidates present expected expression change in another independent data set, which serves as a supplementary validation of these candidates.</p> <p>Conclusions</p> <p>Our results revealed a list of combinatorial genomic features that are significantly associated with gene expression in ES cells, suggesting potential cofactors of the ChIP-seq TFs for gene regulation.</p

    Evolutionary Emergence of microRNAs in Human Embryonic Stem Cells

    Get PDF
    Human embryonic stem (hES) cells have unique abilities to divide indefinitely without differentiating and potential to differentiate into more than 200 cell types. These properties make hES cells an ideal model system for understanding early human development and for regenerative medicine. Molecular mechanisms including cellular signaling and transcriptional regulation play important roles in hES cell differentiation. However, very little information is available on posttranscriptional regulation of hES cell pluripotency, self-renewal, and early decisions about cell fate. microRNAs (miRNAs), 22-nt long non-coding small RNAs found in plants and animals, regulate gene expression by targeting mRNAs for cleavage or translation repression. In hES cells we found that 276 miRNAs were expressed; of these, a set of 30 miRNAs had significantly changed expression during differentiation. Using a representative example, miR-302b, we show that miRNAs in human ES cells assemble into a bona fide RISC that contains Ago2 and can specifically cleave perfectly matched target RNA. Our results demonstrate that human ES cell differentiation is accompanied by changes in the expression of a unique set of miRNAs, providing a glimpse of a new molecular circuitry that may regulate early development in humans. Chromosomes 19 and X contained 98 and 40 miRNA genes, respectively, indicating that majority of miRNA genes in hES cells were expressed from these two chromosomes. Strikingly, distribution analysis of miRNA gene loci across six species including dog, rat, mouse, rhesus, chimpanzee, and human showed that miRNA genes encoded in chromosome 19 were drastically increased in chimpanzees and humans while miRNA gene loci on other chrosmomes were decreased as compared with dog, rat, and mouse. Comparative genomic studies showed 99% conservation of chromosome 19 miRNA genes between chimpanzees and humans. Together, these findings reveal the evolutionary emergence, ∼5 million years ago, of miRNAs involved in regulating early human development. One could imagine that this burst of miRNA gene clusters at specific chromosomes was part of an evolutionary event during species divergence

    CARM1 Mediates Modulation of Sox2

    Get PDF
    Sox2 is a key component of the transcription factor network that maintains the pluripotent state of embryonic stem cells (ESCs). Sox2 is regulated by multiple post-translational modifications, including ubiquitination, sumoylation, acetylation and phosphorylation. Here we report that Sox2 is in association with and methylated by coactivator-associated arginine methyltransferase 1 (CARM1), a protein arginine methyltransferase that plays a pivotal role in ESCs. We found that CARM1 facilitates Sox2-mediated transactivation and directly methylates Sox2 at arginine 113. This methylation event enhances Sox2 self-association. Furthermore, the physiological retention of Sox2 on chromatin restricts the Sox2 methylation level. Our study reveals the direct regulation of Sox2 by CARM1 that sheds lights on how arginine methylation signals are integrated into the pluripotent transcription factor network

    ECAT11/L1td1 Is Enriched in ESCs and Rapidly Activated During iPSCGeneration, but It Is Dispensable for the Maintenance and Induction of Pluripotency

    Get PDF
    The principal factors that lead to proliferation and pluripotency in embryonic stem cells (ESCs) have been vigorously investigated. However, the global network of factors and their full signaling cascade is still unclear. In this study, we found that ECAT11 (L1td1) is one of the ESC-associated transcripts harboring a truncated fragment of ORF-1, a component of theL1 retrotransposable element. We generated an ECAT11 knock-in mouse by replacing its coding region with green fluorescent protein. In the early stage of development, the fluorescence was observed at the inner cell mass of blastocysts and epiblasts. Despite this specific expression, ECAT11-null mice grow normally and are fertile. In addition, ECAT11 was dispensable for both the proliferation and pluripotency of ESCs.We found rapid and robust activation of ECAT11 in fibroblasts after the forced expression of transcription factors that can give rise pluripotency in somatic cells.However, iPS cells could be established from ECAT11-null fibroblasts. Our data demonstrate thedispensability of ECAT11/L1td1 in pluripotency, despite its specific expression

    MRGD, a MAS-related G-protein Coupled Receptor, Promotes Tumorigenisis and Is Highly Expressed in Lung Cancer

    Get PDF
    To elucidate the function of MAS-related GPCR, member D (MRGD) in cancers, we investigated the in vitro and in vivo oncogenic function of MRGD using murine fibroblast cell line NIH3T3 in which MRGD is stably expressed. The expression pattern of MRGD in clinical samples was also analyzed. We found that overexpression of MRGD in NIH3T3 induced focus formation and multi-cellular spheroid formation, and promoted tumors in nude mice. In other words, overexpression of MRGD in NIH3T3 induced the loss of contact inhibition, anchorage-independent growth and in vivo tumorigenesis. Furthermore, it was found that the ligand of MRGD, beta-alanine, enhanced spheroid formation in MRGD-expressing NIH3T3 cells. From investigation of clinical cancer tissues, we found high expression of MRGD in several lung cancers by immunohistochemistry as well as real time PCR. Based on these results, MRGD could be involved in tumorigenesis and could also be a novel anticancer drug target

    Evidence That SOX2 Overexpression Is Oncogenic in the Lung

    Get PDF
    BACKGROUND: SOX2 (Sry-box 2) is required to maintain a variety of stem cells, is overexpressed in some solid tumors, and is expressed in epithelial cells of the lung. METHODOLOGY/PRINCIPAL FINDINGS: We show that SOX2 is overexpressed in human squamous cell lung tumors and some adenocarcinomas. We have generated mouse models in which Sox2 is upregulated in epithelial cells of the lung during development and in the adult. In both cases, overexpression leads to extensive hyperplasia. In the terminal bronchioles, a trachea-like pseudostratified epithelium develops with p63-positive cells underlying columnar cells. Over 12-34 weeks, about half of the mice expressing the highest levels of Sox2 develop carcinoma. These tumors resemble adenocarcinoma but express the squamous marker, Trp63 (p63). CONCLUSIONS: These findings demonstrate that Sox2 overexpression both induces a proximal phenotype in the distal airways/alveoli and leads to cancer

    NPR-A regulates self-renewal and pluripotency of embryonic stem cells

    Get PDF
    Self-renewal and pluripotency of embryonic stem (ES) cells are maintained by several signaling cascades and by expression of intrinsic factors, such as Oct4, Nanog and Sox2. The mechanism regulating these signaling cascades in ES cells is of great interest. Recently, we have demonstrated that natriuretic peptide receptor A (NPR-A), a specific receptor for atrial and brain natriuretic peptides (ANP and BNP, respectively), is expressed in pre-implantation embryos and in ES cells. Here, we examined whether NPR-A is involved in the maintenance of ES cell pluripotency. RNA interference-mediated knockdown of NPR-A resulted in phenotypic changes, indicative of differentiation, downregulation of pluripotency factors (such as Oct4, Nanog and Sox2) and upregulation of differentiation genes. NPR-A knockdown also resulted in a marked downregulation of phosphorylated Akt. Furthermore, NPR-A knockdown induced accumulation of ES cells in the G1 phase of the cell cycle. Interestingly, we found that ANP was expressed in self-renewing ES cells, whereas its level was reduced after ES cell differentiation. Treatment of ES cells with ANP upregulated the expression of Oct4, Nanog and phosphorylated Akt, and this upregulation depended on NPR-A signaling, because it was completely reversed by pretreatment with either an NPR-A antagonist or a cGMP-dependent protein kinase inhibitor. These findings provide a novel role for NPR-A in the maintenance of self-renewal and pluripotency of ES cells
    • …
    corecore