11,338 research outputs found

    Drastic annealing effects in transport properties of single crystals of the YbNi2B2C heavy fermion system

    Full text link
    We report temperature dependent resistivity, specific heat, magnetic susceptibility and thermoelectric power measurements made on the heavy fermion system YbNi2B2C, for both as grown and annealed single crystals. Our results demonstrate a significant variation in the temperature dependent electrical resistivity and thermoelectric power between as grown crystals and crystals that have undergone optimal (150 hour, 950 C) annealing, whereas the thermodynamic properties: (c_p(T) and chi(T)) remain almost unchanged. We interpret these results in terms of redistributions of local Kondo temperatures associated with ligandal disorder for a small (~ 1%) fraction of the Yb sites.Comment: 5 pages, 4 figures, submitted to PR

    Development of fad7-1 single mutant Arabidopsis thaliana plants that are resistant to aphids

    Get PDF
    Aphids are a group of sap-feeding insects that attack most of the world’s crops. The loss of function of fatty acid desaturase7 (FAD7) in Solanum lycopersicum (tomato plant) induces aphid resistance that is dependent upon the accumulation of plant defense hormones such as salicylic acid (SA). Tomato lacks most of the genetic resources found in the model plant Arabidopsis (Arabidopsis thaliana). There is an analogous fad7-1 line of Arabidopsis; however, the line has a background mutation, the glabra-1 (gl1), that causes the absence of trichomes (small hairs), which are essential to plant defense. In order to study aphid resistance, a single mutant line of fad7-1 mutants were developed using cross breeding between the fad7-1/gl1 mutant and wild-type plants. Homozygous fad7-1 mutants were then identified using the Kasajima DNA extraction method, followed by the use of single nucleotide polymorphism-polymerase chain reaction (SNP-PCR) primers using allele-specific PCR. A phenotypic screening was then performed to screen out the plants with the glabra-1 mutation using the presence or absence of trichomes. Two single Arabidopsis fad7-1 mutant lines were identified, and subsequently verified using a bioassay to be aphid resistant relative to other genotypes as seen in tomato

    Explaining Aviation Safety Incidents Using Deep Temporal Multiple Instance Learning

    Full text link
    Although aviation accidents are rare, safety incidents occur more frequently and require a careful analysis to detect and mitigate risks in a timely manner. Analyzing safety incidents using operational data and producing event-based explanations is invaluable to airline companies as well as to governing organizations such as the Federal Aviation Administration (FAA) in the United States. However, this task is challenging because of the complexity involved in mining multi-dimensional heterogeneous time series data, the lack of time-step-wise annotation of events in a flight, and the lack of scalable tools to perform analysis over a large number of events. In this work, we propose a precursor mining algorithm that identifies events in the multidimensional time series that are correlated with the safety incident. Precursors are valuable to systems health and safety monitoring and in explaining and forecasting safety incidents. Current methods suffer from poor scalability to high dimensional time series data and are inefficient in capturing temporal behavior. We propose an approach by combining multiple-instance learning (MIL) and deep recurrent neural networks (DRNN) to take advantage of MIL's ability to learn using weakly supervised data and DRNN's ability to model temporal behavior. We describe the algorithm, the data, the intuition behind taking a MIL approach, and a comparative analysis of the proposed algorithm with baseline models. We also discuss the application to a real-world aviation safety problem using data from a commercial airline company and discuss the model's abilities and shortcomings, with some final remarks about possible deployment directions

    Pulsed x-rays dose measurements from a hundred joules plasma focus device

    Get PDF
    Indexación: Scopus.Present work is aimed to perform dosimetric measurements to characterize dosis obtained from pulsed x-rays emitted from a hundred joules plasma focus device PF-400J using thermoluminescent dosimeters (TLD-100). Two dosimeter arrays (containing 21 dosimeters in each) were used. One of the arrays was kept inside the PF-400J vacuum chamber and other outside the vacuum chamber, simultaneously. It was found that dosis obtained from the inside array (∼200.7 mGy) were hundred times larger than the outside array (∼1.1 mGy) for hundred pulses of x-rays. Later, the vacuum window of PF-400J, which was made of 1 mm aluminum, was replaced by a plastic window and a similar dosimeter array was kept outside the chamber over the plastic window. With this arrangement, the obtained doses (100 pulses of x-rays) were of the same order of magnitude (∼106 mGy) as it was inside the vacuum chamber. Later, a lead piece was inserted inside the hollow anode of PF-400J, which increased dose (∼250 mGy) per hundred pulses of x-ray outside the vacuum chamber using plastic vacuum window. Our results suggest that PF-400J could be a useful device to study low dose pulsed radiation effects on cancer cell lines in in vitro experiments. © Published under licence by IOP Publishing Ltd.The work is supported by grant ACT-1115, CONICYT, Chile.https://iopscience.iop.org/article/10.1088/1742-6596/1043/1/01204

    Anomalous infrared spectra of hybridized phonons in type-I clathrate Ba8_8Ga16_{16}Ge30_{30}

    Full text link
    The optical conductivity spectra of the rattling phonons in the clathrate Ba8_8Ga16_{16}Ge30_{30} are investigated in detail by use of the terahertz time-domain spectroscopy. The experiment has revealed that the lowest-lying vibrational mode of a Ba(2)2+^{2+} ion consists of a sharp Lorentzian peak at 1.2 THz superimposed on a broad tail weighted in the lower frequency regime around 1.0 THz. With decreasing temperature, an unexpected linewidth broadening of the phonon peak is observed, together with monotonic softening of the phonon peak and the enhancement of the tail structure. These observed anomalies are discussed in terms of impurity scattering effects on the hybridized phonon system of rattling and acoustic phonons.Comment: Submitted to JPS

    Magnetic properties of GdT2T_2Zn20_{20} (T = Fe, Co) investigated by X-ray diffraction and spectroscopy

    Get PDF
    We investigate the magnetic and electronic properties of the GdT2T_2Zn20_{20} (TT = Fe and Co) compounds using X-ray resonant magnetic scattering (XRMS), X-ray absorption near-edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) techniques. The XRMS measurements reveal that the GdCo2_2Zn20_{20} compound has a commensurate antiferromagnetic spin structure with a magnetic propagation vector τ⃗\vec{\tau} = (12,12,12)(\frac{1}{2},\frac{1}{2},\frac{1}{2}) below the N\'eel temperature (TN∼T_N \sim 5.7 K). Only the Gd ions carry a magnetic moment forming an antiferromagnetic structure with magnetic representation Γ6\Gamma_6. For the ferromagnetic GdFe2_2Zn20_{20} compound, an extensive investigation was performed at low temperature and under magnetic field using XANES and XMCD techniques. A strong XMCD signal of about 12.5 %\% and 9.7 %\% is observed below the Curie temperature (TC∼T_C \sim 85 K) at the Gd-L2L_2 and L3L_3 edges, respectively. In addition, a small magnetic signal of about 0.06 %\% of the jump is recorded at the Zn KK-edge suggesting that the Zn 4pp states are spin polarized by the Gd 5dd extended orbitals

    Direct observation of Fe spin reorientation in single crystalline YbFe6Ge6

    Full text link
    We have grown single crystals of YbFe6Ge6 and LuFe6Ge6 and characterized their anisotropic behaviour through low field magnetic susceptibility, field-dependent magnetization, resistivity and heat capacity measurements. The Yb+3 valency is confirmed by LIII XANES measurements. YbFe6Ge6 crystals exhibit a field-dependent, sudden reorientation of the Fe spins at about 63 K, a unique effect in the RFe6Ge6 family (R = rare earths) where the Fe ions order anti-ferromagnetically with Neel temperatures above 450 K and the R ions' magnetism appears to behave independently. The possible origins of this unusual behaviour of the ordered Fe moments in this compound are discussed.Comment: 12 pages, 8 figures, accepted in J. Phys.: Cond. Matte
    • …
    corecore