6,712 research outputs found

    Estudo do potencial de degradação de toxina Cry por bactéria isolada de solo. I - Estudo da influência do pH e do tampão de ativação.

    Get PDF
    Microrganismos da rizosfera sofrem influência direta de exsudados de raízes das plantas. Plantas transgênicas podem exsudar novas proteínas produzidas a partir de respostas de genes instalados nessas plantas, o que poderia gerar impactos à microbiota do solo. Este trabalho teve por objetivo avaliar a dinâmica de crescimento de um microrganismo isolado em meio mínimo, a partir de solo rizosférico de algodão Bt, em dois pH e na presença e ausência de tampão carbonato (tampão de ativação). Estas respostas são essenciais para a etapa futura do trabalho de estudo da degradação da proteína Cry. O crescimento foi realizado em meio mínimo líquido mineral, a pH 7,0 e 8,0 na presença e ausência de tampão ativador da proteína, a 180 rpm, 28º C por 72 horas. Verificou-se o crescimento bacteriano, em nutriente ágar, após 48 horas de incubação a 28º C, sendo expresso em unidades formadoras de colônias por mL (UFC/mL). Observou-se que não houve diferença significativa entre os crescimentos a diferentes pH e na presença ou ausência do tampão

    The rise of fully turbulent flow

    Full text link
    Over a century of research into the origin of turbulence in wallbounded shear flows has resulted in a puzzling picture in which turbulence appears in a variety of different states competing with laminar background flow. At slightly higher speeds the situation changes distinctly and the entire flow is turbulent. Neither the origin of the different states encountered during transition, nor their front dynamics, let alone the transformation to full turbulence could be explained to date. Combining experiments, theory and computer simulations here we uncover the bifurcation scenario organising the route to fully turbulent pipe flow and explain the front dynamics of the different states encountered in the process. Key to resolving this problem is the interpretation of the flow as a bistable system with nonlinear propagation (advection) of turbulent fronts. These findings bridge the gap between our understanding of the onset of turbulence and fully turbulent flows.Comment: 31 pages, 9 figure

    Three new geminiviruses in tomato in the state of Pernambuco.

    Get PDF
    These clones were used as probes in hybridization test, allowing the detection of each virus separately, with no cross-reactivity.Suplemento. Edição dos Resumos do 31 Congresso Brasileiro de Fitopatologia, Fortaleza, 1998

    Predicting fine-scale daily NO2 over Mexico city using an ensemble modeling approach

    Get PDF
    In recent years, there has been growing interest in developing air pollution prediction models to reduce exposure measurement error in epidemiologic studies. However, efforts for localized, fine-scale prediction models have been predominantly focused in the United States and Europe. Furthermore, the availability of new satellite instruments such as the TROPOsopheric Monitoring Instrument (TROPOMI) provides novel opportunities for modeling efforts. We estimated daily ground-level nitrogen dioxide (NO2) concentrations in the Mexico City Metropolitan Area at 1-km2 grids from 2005 to 2019 using a four-stage approach. In stage 1 (imputation stage), we imputed missing satellite NO2 column measurements from the Ozone Monitoring Instrument (OMI) and TROPOMI using the random forest (RF) approach. In stage 2 (calibration stage), we calibrated the association of column NO2 to ground-level NO2 using ground monitors and meteorological features using RF and extreme gradient boosting (XGBoost) models. In stage 3 (prediction stage), we predicted the stage 2 model over each 1-km2 grid in our study area, then ensembled the results using a generalized additive model (GAM). In stage 4 (residual stage), we used XGBoost to model the local component at the 200-m2 scale. The cross-validated R2 of the RF and XGBoost models in stage 2 were 0.75 and 0.86 respectively, and 0.87 for the ensembled GAM. Cross-validated root-mean-squared error (RMSE) of the GAM was 3.95 μg/m3. Using novel approaches and newly available remote sensing data, our multi-stage model presented high cross-validated fits and reconstructs fine-scale NO2 estimates for further epidemiologic studies in Mexico City

    Determination of the (3x3)-Sn/Ge(111) structure by photoelectron diffraction

    Full text link
    At a coverage of about 1/3 monolayer, Sn deposited on Ge(111) below 550 forms a metastable (sqrt3 x sqrt3)R30 phase. This phase continuously and reversibly transforms into a (3x3) one, upon cooling below 200 K. The photoemission spectra of the Sn 4d electrons from the (3x3)-Sn/Ge(111) surface present two components which are attributed to inequivalent Sn atoms in T4 bonding sites. This structure has been explored by photoelectron diffraction experiments performed at the ALOISA beamline of the Elettra storage ring in Trieste (Italy). The modulation of the intensities of the two Sn components, caused by the backscattering of the underneath Ge atoms, has been measured as a function of the emission angle at fixed kinetic energies and viceversa. The bond angle between Sn and its nearest neighbour atoms in the first Ge layer (Sn-Ge1) has been measured by taking polar scans along the main symmetry directions and it was found almost equivalent for the two components. The corresponding bond lengths are also quite similar, as obtained by studying the dependence on the photoelectron kinetic energy, while keeping the photon polarization and the collection direction parallel to the Sn-Ge1 bond orientation (bond emission). A clear difference between the two bonding sites is observed when studying the energy dependence at normal emission, where the sensitivity to the Sn height above the Ge atom in the second layer is enhanced. This vertical distance is found to be 0.3 Angstroms larger for one Sn atom out of the three contained in the lattice unit cell. The (3x3)-Sn/Ge(111) is thus characterized by a structure where the Sn atom and its three nearest neighbour Ge atoms form a rather rigid unit that presents a strong vertical distortion with respect to the underneath atom of the second Ge layer.Comment: 10 pages with 9 figures, added reference

    Epigenetic remodelling in human hepatocellular carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer, being the sixth most commonly diagnosed cancer and the fourth leading cause of cancer-related death. As other heterogeneous solid tumours, HCC results from a unique synergistic combination of genetic alterations mixed with epigenetic modifications. In HCC the patterns and frequencies of somatic variations change depending on the nearby chromatin. On the other hand, epigenetic alterations often induce genomic instability prone to mutations. Epigenetics refers to heritable states of gene expression without alteration to the DNA sequence itself and, unlike genetic changes, the epigenetic modifications are reversible and affect gene expression more extensively than genetic changes. Thus, studies of epigenetic regulation and the involved molecular machinery are greatly contributing to the understanding of the mechanisms that underline HCC onset and heterogeneity. Moreover, this knowledge may help to identify biomarkers for HCC diagnosis and prognosis, as well as future new targets for more efficacious therapeutic approaches. In this comprehensive review we will discuss the state-of-the-art knowledge about the epigenetic landscape in hepatocarcinogenesis, including evidence on the diagnostic and prognostic role of non-coding RNAs, modifications occurring at the chromatin level, and their role in the era of precision medicine. Apart from other better-known risk factors that predispose to the development of HCC, characterization of the epigenetic remodelling that occurs during hepatocarcinogenesis could open the way to the identification of personalized biomarkers. It may also enable a more accurate diagnosis and stratification of patients, and the discovery of new targets for more efficient therapeutic approaches

    Phase transitions in two dimensions - the case of Sn adsorbed on Ge(111) surfaces

    Full text link
    Accurate atomic coordinates of the room-temperature (root3xroot3)R30degree and low-temperature (3x3) phases of 1/3 ML Sn on Ge(111) have been established by grazing-incidence x-ray diffraction with synchrotron radiation. The Sn atoms are located solely at T4-sites in the (root3xroot3)R30degree structure. In the low temperature phase one of the three Sn atoms per (3x3) unit cell is displaced outwards by 0.26 +/- 0.04 A relative to the other two. This displacement is accompanied by an increase in the first to second double-layer spacing in the Ge substrate.Comment: RevTeX, 5 pages including 2 figure
    corecore