4 research outputs found

    Novel interactions of GRP78: UPR and estrogen responses in the brain

    Get PDF
    Glucose-regulated protein 78 (GRP78; 78 kDa) belongs to a group of highly conserved heat shock proteins (Hsp) with important functions at the cellular level. The emerging interest for GRP78 relies on its different functions, both in normal and pathological circumstances. GRP78 regulates intracellular calcium, protein shaping, endoplasmic reticulum (ER) stress and cell survival by an immediate response to insults, and that its expression may also be regulated by estrogens. Although these roles are well explored, the mechanisms by which GRP78 induces these changes are not completely understood. In this review, we highlight various aspects related to the GRP78 functioning in cellular protection and repair in response to ER stress and unfolded protein response by the regulation of intracellular Ca2+ and other mechanisms. In this respect, the novel interactions between GRP78 and estrogens, such as estradiol and others, are analyzed in the context of the central nervous system (CNS). We also discuss the importance of GRP78 and estrogens in brain diseases including ischemia, Alzheimer's and Huntington's disorders. Finally, the main protective mechanisms of GRP78 and estrogens during ER dysfunction in the brain are described, and the prospective roles of GRP78 in therapeutic processes.Fil: Avila, Marco Fidel. Pontificia Universidad Javeriana; ColombiaFil: Cabezas, Ricardo. Pontificia Universidad Javeriana; ColombiaFil: Torrente, Daniel. Pontificia Universidad Javeriana; ColombiaFil: Gonzalez, Janneth. Pontificia Universidad Javeriana; ColombiaFil: Morales, Ludis. Pontificia Universidad Javeriana; ColombiaFil: Alvarez, Lisandro. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones CardiolĂłgicas (i); ArgentinaFil: Capani, Francisco. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones CardiolĂłgicas (i); ArgentinaFil: Barreto, George E.. Pontificia Universidad Javeriana; Colombi

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore