23 research outputs found

    Imagine Jane and Identify John: Face Identity Aftereffects Induced by Imagined Faces

    Get PDF
    It is not known whether prolonged exposure to perceived and imagined complex visual images produces similar shifts in subsequent perception through selective adaptation. This question is important because a positive finding would suggest that perception and imagery of visual stimuli are mediated by shared neural networks. In this study, we used a selective adaptation procedure designed to induce high-level face-identity aftereffects—a phenomenon in which extended exposure to a particular face facilitates recognition of subsequent faces with opposite features while impairing recognition of all other faces. We report here that adaptation to either real or imagined faces produces a similar shift in perception and that identity boundaries represented in real and imagined faces are equivalent. Together, our results show that identity information contained in imagined and real faces produce similar behavioral outcomes. Our findings of high-level visual aftereffects induced by imagined stimuli can be taken as evidence for the involvement of shared neural networks that mediate perception and imagery of complex visual stimuli

    Dorsal-ventral integration in the recognition of motion-defined unfamiliar faces

    Get PDF
    The primate visual system is organized into two parallel anatomical pathways, both originating in early visual areas but terminating in posterior parietal or inferior temporal regions. Classically, these two pathways have been thought to subserve spatial vision and visual guided actions (dorsal pathway) and object identification (ventral pathway). However, evidence is accumulating that dorsal visual areas may also represent many aspects of object shape in absence of demands for attention or action. Dorsal visual areas exhibit selectivity for three-dimensional cues of depth and are considered necessary for the extraction of surfaces from depth cues and can carry out cognitive functions with such cues as well. These results suggest that dorsal visual areas may participate in object recognition, but it is unclear to what capacity. Here, we tested whether three-dimensional structure-from-motion (SFM) cues, thought to be computed exclusively by dorsal stream mechanisms, are sufficient to drive complex object recognition. We then tested whether recognition of such stimuli relies on dorsal stream mechanisms alone, or whether dorsal-ventral integration is invoked. Results suggest that such cues are sufficient to drive unfamiliar face recognition in normal participants and that ventral stream areas are necessary for both identification and learning of unfamiliar faces from SFM cues

    Lighting Quality Evaluations using Images on a High Dynamic Range Display

    Get PDF
    Limited research comparing participant ratings of luminous environments to ratings of images of those environments indicates that images can be a reasonable surrogate for the real space, particularly on ratings related to aesthetics. However, the realism of such images when presented on computer screens is potentially limited by conventional display technologies that cannot reproduce the full range of luminances in real spaces. In this pilot experiment we used a new, high dynamic range (HDR) computer monitor capable of producing screen luminances and contrasts comparable to those in a real space. Fifty-four participants viewed three images of a conventional office in two display modes: HDR monitor and conventional monitor. Participants rated each image for room appearance, environmental satisfaction and realism. These ratings were also compared to similar ratings made by participants in an earlier experiment (reported in 1998) who occupied the real spaces depicted in the images. Results indicate that computer screen images are perceived in a similar way as real luminous environments. HDR images are perceived differently than images on a conventional monitor: they are rated as brighter and less attractive, as expected. Given their more authentic luminances, HDR images should be perceived as more similar to the real space, but our results neither support nor refute this

    Batch Immunostaining for Large-Scale Protein Detection in the Whole Monkey Brain

    No full text
    Immunohistochemistry (IHC) is one of the most widely used laboratory techniques for the detection of target proteins in situ. Questions concerning the expression pattern of a target protein across the entire brain are relatively easy to answer when using IHC in small brains, such as those of rodents. However, answering the same questions in large and convoluted brains, such as those of primates presents a number of challenges. Here we present a systematic approach for immunodetection of target proteins in an adult monkey brain. This approach relies on the tissue embedding and sectioning methodology of NeuroScience Associates (NSA) as well as tools developed specifically for batch-staining of free-floating sections. It results in uniform staining of a set of sections which, at a particular interval, represents the entire brain. The resulting stained sections can be subjected to a wide variety of analytical procedures in order to measure protein levels, the population of neurons expressing a certain protein
    corecore