59 research outputs found

    Identification of genetic polymorphisms in MC4R and GPX5 genes in the autochthonous Greek black pig breed

    Get PDF
    The importance of local breeds as genetic reservoirs of valuable genetic variation is well established and the evaluation of the genetic structure of autochthonous pig breeds is very important for conservation of local pig breeds and preservation of diversity. Although local farm animal breeds are important for the maintenance of genetic diversity, most of them are now in danger of extinc­tion. The autochthonous Greek black pig breed, which was raised locally and is well known for the high quality of its meat, is the only traditional indigenous pig breed reared in Greece and is able to adapt to different and harsh environmental conditions. Recent studies have reported that gene polymorphisms in melanocortin 4 receptor (MC4R) and glutathione peroxidase 5 (GPX5) genes are associated with litter size in pig and can be used as genetic markers in gene assisted selection programs for the improvement of reproductive performance. The objective of this study was to investigate the existence of these polymorphisms in the autochthonous Greek black pig breed. One hundred sixty pigs raised in Greece were included in the study. DNA was extracted and genotyping was performed using RFLP - PCR. The molecular results revealed that for MC4R, genotype GG had a frequency of 0.37, GA 0.44 and AA 0.19, while the frequency of allele G was 0.56 and of A 0.44. For GPX5, genotype AA had a frequency of 0.19, AB 0.41 and BB 0.40, with frequencies of alleles A and B being 0.43 and 0.57, respectively. These data revealed that all genotypes of the two genes were present in the investigated population, indicating that these genes could be used for Marker-assisted selection programmes for the genetic improvement of reproductive characteristics of this breed

    Clinical activity of an htert-specific cancer vaccine (Vx-001) in “immune desert” NSCLC

    No full text
    Background: Tumors can be separated into immunogenic/hot and non-immunogenic/cold on the basis of the presence of tumor-infiltrating lymphocytes (TILs), the expression of PD-L1 and the tumor mutation burden (TMB). In immunogenic tumors, TILs become unable to control tumor growth because their activity is suppressed by different inhibitory pathways, including PD-1/PD-L1. We hypothesized that tumor vaccines may not be active in the immunosuppressive microenvironment of immunogenic/hot tumors while they could be efficient in the immune naïve microenvironment of non-immunogenic/cold tumors. Methods: The randomized phase II Vx-001-201 study investigated the effect of the Vx-001 vaccine as maintenance treatment in metastatic non-small cell lung cancer (NSCLC) patients. Biopsies from 131 (68 placebo and 63 Vx-001) patients were retrospectively analyzed for PD-L1 expression and TIL infiltration. TILs were measured as tumor-associated immune cells (TAICs), CD3-TILs, CD8-TILs and granzyme B-producing TILs (GZMB-TILs). Patients were distinguished into PD-L1(+) and PD-L1(-) and into TIL high and TIL low. Findings: There was no correlation between PD-L1 expression and Vx-001 clinical activity. In contrast, Vx-001 showed a significant improvement of overall survival (OS) vs. placebo in TAIC low (21 vs. 8.1 months, p = 0.003, HR = 0.404, 95% CI 0.219–0.745), CD3-TIL low (21.6 vs. 6.6 months, p < 0.001, HR = 0.279, 95% CI 0.131–0.595), CD8-TIL low (21 vs. 6.6 months, p < 0.001; HR = 0.240, 95% CI 0.11–0.522) and GZMB-TIL low (20.7 vs. 11.1 months, p = 0.011, HR = 0.490, 95% CI 0.278–0.863). Vx-001 did not offer any clinical benefit in patients with TAIC high, CD3-TIL high, CD8-TIL high or GZMB-TIL high tumors. CD3-TIL, CD8-TIL and GZMB-TIL were independent predictive factors of Vx-001 efficacy. Conclusions: These results support the hypothesis that Vx-001 may be efficient in patients with non-immunogenic/cold but not with immunogenic/hot tumors. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Organismal and Cellular Stress Responses upon Disruption of Mitochondrial Lonp1 Protease

    No full text
    Cells engage complex surveillance mechanisms to maintain mitochondrial function and protein homeostasis. LonP1 protease is a key component of mitochondrial quality control and has been implicated in human malignancies and other pathological disorders. Here, we employed two experimental systems, the worm Caenorhabditis elegans and human cancer cells, to investigate and compare the effects of LONP-1/LonP1 deficiency at the molecular, cellular, and organismal levels. Deletion of the lonp-1 gene in worms disturbed mitochondrial function, provoked reactive oxygen species accumulation, and impaired normal processes, such as growth, behavior, and lifespan. The viability of lonp-1 mutants was dependent on the activity of the ATFS-1 transcription factor, and loss of LONP-1 evoked retrograde signaling that involved both the mitochondrial and cytoplasmic unfolded protein response (UPRmt and UPRcyt) pathways and ensuing diverse organismal stress responses. Exposure of worms to triterpenoid CDDO-Me, an inhibitor of human LonP1, stimulated only UPRcyt responses. In cancer cells, CDDO-Me induced key components of the integrated stress response (ISR), the UPRmt and UPRcyt pathways, and the redox machinery. However, genetic knockdown of LonP1 revealed a genotype-specific cellular response and induced apoptosis similar to CDDO-Me treatment. Overall, the mitochondrial dysfunction ensued by disruption of LonP1 elicits adaptive cytoprotective mechanisms that can inhibit cancer cell survival but diversely modulate organismal stress response and aging
    corecore